The goal of Text-to-image person retrieval is to retrieve person images from a large gallery that match the given textual descriptions. The main challenge of this task lies in the significant differences in information representation between the visual and textual modalities. The textual modality conveys abstract and precise information through vocabulary and grammatical structures, while the visual modality conveys concrete and intuitive information through images. To fully leverage the expressive power of textual representations, it is essential to accurately map abstract textual descriptions to specific images. To address this issue, we propose a novel framework to Unleash the Imagination of Text (UIT) in text-to-image person retrieval, aiming to fully explore the power of words in sentences. Specifically, the framework employs the pre-trained full CLIP model as a dual encoder for the images and texts , taking advantage of prior cross-modal alignment knowledge. The Text-guided Image Restoration auxiliary task is proposed with the aim of implicitly mapping abstract textual entities to specific image regions, facilitating alignment between textual and visual embeddings. Additionally, we introduce a cross-modal triplet loss tailored for handling hard samples, enhancing the model's ability to distinguish minor differences. To focus the model on the key components within sentences, we propose a novel text data augmentation technique. Our proposed methods achieve state-of-the-art results on three popular benchmark datasets, and the source code will be made publicly available shortly.
Text-to-image synthesis for the Chinese language poses unique challenges due to its large vocabulary size, and intricate character relationships. While existing diffusion models have shown promise in generating images from textual descriptions, they often neglect domain-specific contexts and lack robustness in handling the Chinese language. This paper introduces PAI-Diffusion, a comprehensive framework that addresses these limitations. PAI-Diffusion incorporates both general and domain-specific Chinese diffusion models, enabling the generation of contextually relevant images. It explores the potential of using LoRA and ControlNet for fine-grained image style transfer and image editing, empowering users with enhanced control over image generation. Moreover, PAI-Diffusion seamlessly integrates with Alibaba Cloud's Machine Learning Platform for AI, providing accessible and scalable solutions. All the Chinese diffusion model checkpoints, LoRAs, and ControlNets, including domain-specific ones, are publicly available. A user-friendly Chinese WebUI and the diffusers-api elastic inference toolkit, also open-sourced, further facilitate the easy deployment of PAI-Diffusion models in various environments, making it a valuable resource for Chinese text-to-image synthesis.
The Mixture of Experts (MoE) is a widely known neural architecture where an ensemble of specialized sub-models optimizes overall performance with a constant computational cost. However, conventional MoEs pose challenges at scale due to the need to store all experts in memory. In this paper, we push MoE to the limit. We propose extremely parameter-efficient MoE by uniquely combining MoE architecture with lightweight experts.Our MoE architecture outperforms standard parameter-efficient fine-tuning (PEFT) methods and is on par with full fine-tuning by only updating the lightweight experts -- less than 1% of an 11B parameters model. Furthermore, our method generalizes to unseen tasks as it does not depend on any prior task knowledge. Our research underscores the versatility of the mixture of experts architecture, showcasing its ability to deliver robust performance even when subjected to rigorous parameter constraints. Our code used in all the experiments is publicly available here: //github.com/for-ai/parameter-efficient-moe.
Modern consumer cameras usually employ the rolling shutter (RS) mechanism, where images are captured by scanning scenes row-by-row, yielding RS distortions for dynamic scenes. To correct RS distortions, existing methods adopt a fully supervised learning manner, where high framerate global shutter (GS) images should be collected as ground-truth supervision. In this paper, we propose a Self-supervised learning framework for Dual reversed RS distortions Correction (SelfDRSC), where a DRSC network can be learned to generate a high framerate GS video only based on dual RS images with reversed distortions. In particular, a bidirectional distortion warping module is proposed for reconstructing dual reversed RS images, and then a self-supervised loss can be deployed to train DRSC network by enhancing the cycle consistency between input and reconstructed dual reversed RS images. Besides start and end RS scanning time, GS images at arbitrary intermediate scanning time can also be supervised in SelfDRSC, thus enabling the learned DRSC network to generate a high framerate GS video. Moreover, a simple yet effective self-distillation strategy is introduced in self-supervised loss for mitigating boundary artifacts in generated GS images. On synthetic dataset, SelfDRSC achieves better or comparable quantitative metrics in comparison to state-of-the-art methods trained in the full supervision manner. On real-world RS cases, our SelfDRSC can produce high framerate GS videos with finer correction textures and better temporary consistency. The source code and trained models are made publicly available at //github.com/shangwei5/SelfDRSC. We also provide an implementation in HUAWEI Mindspore at //github.com/Hunter-Will/SelfDRSC-mindspore.
Recent advances in text-to-image diffusion models have enabled the generation of diverse and high-quality images. While impressive, the images often fall short of depicting subtle details and are susceptible to errors due to ambiguity in the input text. One way of alleviating these issues is to train diffusion models on class-labeled datasets. This approach has two disadvantages: (i) supervised datasets are generally small compared to large-scale scraped text-image datasets on which text-to-image models are trained, affecting the quality and diversity of the generated images, or (ii) the input is a hard-coded label, as opposed to free-form text, limiting the control over the generated images. In this work, we propose a non-invasive fine-tuning technique that capitalizes on the expressive potential of free-form text while achieving high accuracy through discriminative signals from a pretrained classifier. This is done by iteratively modifying the embedding of an added input token of a text-to-image diffusion model, by steering generated images toward a given target class according to a classifier. Our method is fast compared to prior fine-tuning methods and does not require a collection of in-class images or retraining of a noise-tolerant classifier. We evaluate our method extensively, showing that the generated images are: (i) more accurate and of higher quality than standard diffusion models, (ii) can be used to augment training data in a low-resource setting, and (iii) reveal information about the data used to train the guiding classifier. The code is available at \url{//github.com/idansc/discriminative_class_tokens}.
Most real-world classification tasks suffer from label noise to some extent. Such noise in the data adversely affects the generalization error of learned models and complicates the evaluation of noise-handling methods, as their performance cannot be accurately measured without clean labels. In label noise research, typically either noisy or incomplex simulated data are accepted as a baseline, into which additional noise with known properties is injected. In this paper, we propose SYNLABEL, a framework that aims to improve upon the aforementioned methodologies. It allows for creating a noiseless dataset informed by real data, by either pre-specifying or learning a function and defining it as the ground truth function from which labels are generated. Furthermore, by resampling a number of values for selected features in the function domain, evaluating the function and aggregating the resulting labels, each data point can be assigned a soft label or label distribution. Such distributions allow for direct injection and quantification of label noise. The generated datasets serve as a clean baseline of adjustable complexity into which different types of noise may be introduced. We illustrate how the framework can be applied, how it enables quantification of label noise and how it improves over existing methodologies.
Self-supervised masked image modeling has shown promising results on natural images. However, directly applying such methods to medical images remains challenging. This difficulty stems from the complexity and distinct characteristics of lesions compared to natural images, which impedes effective representation learning. Additionally, conventional high fixed masking ratios restrict reconstructing fine lesion details, limiting the scope of learnable information. To tackle these limitations, we propose a novel self-supervised medical image segmentation framework, Adaptive Masking Lesion Patches (AMLP). Specifically, we design a Masked Patch Selection (MPS) strategy to identify and focus learning on patches containing lesions. Lesion regions are scarce yet critical, making their precise reconstruction vital. To reduce misclassification of lesion and background patches caused by unsupervised clustering in MPS, we introduce an Attention Reconstruction Loss (ARL) to focus on hard-to-reconstruct patches likely depicting lesions. We further propose a Category Consistency Loss (CCL) to refine patch categorization based on reconstruction difficulty, strengthening distinction between lesions and background. Moreover, we develop an Adaptive Masking Ratio (AMR) strategy that gradually increases the masking ratio to expand reconstructible information and improve learning. Extensive experiments on two medical segmentation datasets demonstrate AMLP's superior performance compared to existing self-supervised approaches. The proposed strategies effectively address limitations in applying masked modeling to medical images, tailored to capturing fine lesion details vital for segmentation tasks.
Diffusion models have revolted the field of text-to-image generation recently. The unique way of fusing text and image information contributes to their remarkable capability of generating highly text-related images. From another perspective, these generative models imply clues about the precise correlation between words and pixels. In this work, a simple but effective method is proposed to utilize the attention mechanism in the denoising network of text-to-image diffusion models. Without re-training nor inference-time optimization, the semantic grounding of phrases can be attained directly. We evaluate our method on Pascal VOC 2012 and Microsoft COCO 2014 under weakly-supervised semantic segmentation setting and our method achieves superior performance to prior methods. In addition, the acquired word-pixel correlation is found to be generalizable for the learned text embedding of customized generation methods, requiring only a few modifications. To validate our discovery, we introduce a new practical task called "personalized referring image segmentation" with a new dataset. Experiments in various situations demonstrate the advantages of our method compared to strong baselines on this task. In summary, our work reveals a novel way to extract the rich multi-modal knowledge hidden in diffusion models for segmentation.
Image camouflage has been utilized to create clean-label poisoned images for implanting backdoor into a DL model. But there exists a crucial limitation that one attack/poisoned image can only fit a single input size of the DL model, which greatly increases its attack budget when attacking multiple commonly adopted input sizes of DL models. This work proposes to constructively craft an attack image through camouflaging but can fit multiple DL models' input sizes simultaneously, namely OmClic. Thus, through OmClic, we are able to always implant a backdoor regardless of which common input size is chosen by the user to train the DL model given the same attack budget (i.e., a fraction of the poisoning rate). With our camouflaging algorithm formulated as a multi-objective optimization, M=5 input sizes can be concurrently targeted with one attack image, which artifact is retained to be almost visually imperceptible at the same time. Extensive evaluations validate the proposed OmClic can reliably succeed in various settings using diverse types of images. Further experiments on OmClic based backdoor insertion to DL models show that high backdoor performances (i.e., attack success rate and clean data accuracy) are achievable no matter which common input size is randomly chosen by the user to train the model. So that the OmClic based backdoor attack budget is reduced by M$\times$ compared to the state-of-the-art camouflage based backdoor attack as a baseline. Significantly, the same set of OmClic based poisonous attack images is transferable to different model architectures for backdoor implant.
Weakly Supervised Semantic Segmentation (WSSS) relying only on image-level supervision is a promising approach to deal with the need for Segmentation networks, especially for generating a large number of pixel-wise masks in a given dataset. However, most state-of-the-art image-level WSSS techniques lack an understanding of the geometric features embedded in the images since the network cannot derive any object boundary information from just image-level labels. We define a boundary here as the line separating an object and its background, or two different objects. To address this drawback, we are proposing our novel ReFit framework, which deploys state-of-the-art class activation maps combined with various post-processing techniques in order to achieve fine-grained higher-accuracy segmentation masks. To achieve this, we investigate a state-of-the-art unsupervised segmentation network that can be used to construct a boundary map, which enables ReFit to predict object locations with sharper boundaries. By applying our method to WSSS predictions, we achieved up to 10% improvement over the current state-of-the-art WSSS methods for medical imaging. The framework is open-source, to ensure that our results are reproducible, and accessible online at //github.com/bharathprabakaran/ReFit.
Inspired by the remarkable success of Latent Diffusion Models (LDMs) for image synthesis, we study LDM for text-to-video generation, which is a formidable challenge due to the computational and memory constraints during both model training and inference. A single LDM is usually only capable of generating a very limited number of video frames. Some existing works focus on separate prediction models for generating more video frames, which suffer from additional training cost and frame-level jittering, however. In this paper, we propose a framework called "Reuse and Diffuse" dubbed $\textit{VidRD}$ to produce more frames following the frames already generated by an LDM. Conditioned on an initial video clip with a small number of frames, additional frames are iteratively generated by reusing the original latent features and following the previous diffusion process. Besides, for the autoencoder used for translation between pixel space and latent space, we inject temporal layers into its decoder and fine-tune these layers for higher temporal consistency. We also propose a set of strategies for composing video-text data that involve diverse content from multiple existing datasets including video datasets for action recognition and image-text datasets. Extensive experiments show that our method achieves good results in both quantitative and qualitative evaluations. Our project page is available $\href{//anonymous0x233.github.io/ReuseAndDiffuse/}{here}$.