When computing the gradients of a quantum neural network using the parameter-shift rule, the cost function needs to be calculated twice for the gradient with respect to a single adjustable parameter of the network. When the total number of parameters is high, the quantum circuit for the computation has to be adjusted and run for many times. Here we propose an approach to compute all the gradients using a single circuit only, with a much reduced circuit depth and less classical registers. We also demonstrate experimentally, on both real quantum hardware and simulator, that our approach has the advantages that the circuit takes a significantly shorter time to compile than the conventional approach, resulting in a speedup on the total runtime.
We are interested in numerical algorithms for computing the electrical field generated by a charge distribution localized on scale $l$ in an infinite heterogeneous correlated random medium, in a situation where the medium is only known in a box of diameter $L\gg l$ around the support of the charge. We show that the algorithm of Lu, Otto and Wang, suggesting optimal Dirichlet boundary conditions motivated by the multipole expansion of Bella, Giunti and Otto, still performs well in correlated media. With overwhelming probability, we obtain a convergence rate in terms of $l$, $L$ and the size of the correlations for which optimality is supported with numerical simulations. These estimates are provided for ensembles which satisfy a multi-scale logarithmic Sobolev inequality, where our main tool is an extension of the semi-group estimates established by the first author. As part of our strategy, we construct sub-linear second-order correctors in this correlated setting which is of independent interest.
Neural networks are high-dimensional nonlinear dynamical systems that process information through the coordinated activity of many connected units. Understanding how biological and machine-learning networks function and learn requires knowledge of the structure of this coordinated activity, information contained, for example, in cross covariances between units. Self-consistent dynamical mean field theory (DMFT) has elucidated several features of random neural networks -- in particular, that they can generate chaotic activity -- however, a calculation of cross covariances using this approach has not been provided. Here, we calculate cross covariances self-consistently via a two-site cavity DMFT. We use this theory to probe spatiotemporal features of activity coordination in a classic random-network model with independent and identically distributed (i.i.d.) couplings, showing an extensive but fractionally low effective dimension of activity and a long population-level timescale. Our formulae apply to a wide range of single-unit dynamics and generalize to non-i.i.d. couplings. As an example of the latter, we analyze the case of partially symmetric couplings.
This paper presents a novel approach to construct regularizing operators for severely ill-posed Fredholm integral equations of the first kind by introducing parametrized discretization. The optimal values of discretization and regularization parameters are computed simultaneously by solving a minimization problem formulated based on a regularization parameter search criterion. The effectiveness of the proposed approach is demonstrated through examples of noisy Laplace transform inversions and the deconvolution of nuclear magnetic resonance relaxation data.
Conditional graph entropy is known to be the minimal rate for a natural functional compression problem with side information at the receiver. In this paper we show that it can be formulated as an alternating minimization problem, which gives rise to a simple iterative algorithm for numerically computing (conditional) graph entropy. This also leads to a new formula which shows that conditional graph entropy is part of a more general framework: the solution of an optimization problem over a convex corner. In the special case of graph entropy (i.e., unconditioned version) this was known due to Csisz\'ar, K\"orner, Lov\'asz, Marton, and Simonyi. In that case the role of the convex corner was played by the so-called vertex packing polytope. In the conditional version it is a more intricate convex body but the function to minimize is the same. Furthermore, we describe a dual problem that leads to an optimality check and an error bound for the iterative algorithm.
The 3D reconstruction of simultaneous localization and mapping (SLAM) is an important topic in the field for transport systems such as drones, service robots and mobile AR/VR devices. Compared to a point cloud representation, the 3D reconstruction based on meshes and voxels is particularly useful for high-level functions, like obstacle avoidance or interaction with the physical environment. This article reviews the implementation of a visual-based 3D scene reconstruction pipeline on resource-constrained hardware platforms. Real-time performances, memory management and low power consumption are critical for embedded systems. A conventional SLAM pipeline from sensors to 3D reconstruction is described, including the potential use of deep learning. The implementation of advanced functions with limited resources is detailed. Recent systems propose the embedded implementation of 3D reconstruction methods with different granularities. The trade-off between required accuracy and resource consumption for real-time localization and reconstruction is one of the open research questions identified and discussed in this paper.
The study of hidden structures in data presents challenges in modern statistics and machine learning. We introduce the $\mathbf{gips}$ package in R, which identifies permutation subgroup symmetries in Gaussian vectors. $\mathbf{gips}$ serves two main purposes: exploratory analysis in discovering hidden permutation symmetries and estimating the covariance matrix under permutation symmetry. It is competitive to canonical methods in dimensionality reduction while providing a new interpretation of the results. $\mathbf{gips}$ implements a novel Bayesian model selection procedure within Gaussian vectors invariant under the permutation subgroup introduced in Graczyk, Ishi, Ko{\l}odziejek, Massam, Annals of Statistics, 50 (3) (2022).
With the increasing availability of large scale datasets, computational power and tools like automatic differentiation and expressive neural network architectures, sequential data are now often treated in a data-driven way, with a dynamical model trained from the observation data. While neural networks are often seen as uninterpretable black-box architectures, they can still benefit from physical priors on the data and from mathematical knowledge. In this paper, we use a neural network architecture which leverages the long-known Koopman operator theory to embed dynamical systems in latent spaces where their dynamics can be described linearly, enabling a number of appealing features. We introduce methods that enable to train such a model for long-term continuous reconstruction, even in difficult contexts where the data comes in irregularly-sampled time series. The potential for self-supervised learning is also demonstrated, as we show the promising use of trained dynamical models as priors for variational data assimilation techniques, with applications to e.g. time series interpolation and forecasting.
Developing an efficient computational scheme for high-dimensional Bayesian variable selection in generalised linear models and survival models has always been a challenging problem due to the absence of closed-form solutions for the marginal likelihood. The RJMCMC approach can be employed to samples model and coefficients jointly, but effective design of the transdimensional jumps of RJMCMC can be challenge, making it hard to implement. Alternatively, the marginal likelihood can be derived using data-augmentation scheme e.g. Polya-gamma data argumentation for logistic regression) or through other estimation methods. However, suitable data-augmentation schemes are not available for every generalised linear and survival models, and using estimations such as Laplace approximation or correlated pseudo-marginal to derive marginal likelihood within a locally informed proposal can be computationally expensive in the "large n, large p" settings. In this paper, three main contributions are presented. Firstly, we present an extended Point-wise implementation of Adaptive Random Neighbourhood Informed proposal (PARNI) to efficiently sample models directly from the marginal posterior distribution in both generalised linear models and survival models. Secondly, in the light of the approximate Laplace approximation, we also describe an efficient and accurate estimation method for the marginal likelihood which involves adaptive parameters. Additionally, we describe a new method to adapt the algorithmic tuning parameters of the PARNI proposal by replacing the Rao-Blackwellised estimates with the combination of a warm-start estimate and an ergodic average. We present numerous numerical results from simulated data and 8 high-dimensional gene fine mapping data-sets to showcase the efficiency of the novel PARNI proposal compared to the baseline add-delete-swap proposal.
The nonnegative rank of nonnegative matrices is an important quantity that appears in many fields, such as combinatorial optimization, communication complexity, and information theory. In this paper, we study the asymptotic growth of the nonnegative rank of a fixed nonnegative matrix under Kronecker product. This quantity is called the asymptotic nonnegative rank, which is already studied in information theory. By applying the theory of asymptotic spectra of V. Strassen (J. Reine Angew. Math. 1988), we introduce the asymptotic spectrum of nonnegative matrices and give a dual characterization of the asymptotic nonnegative rank. As the opposite of nonnegative rank, we introduce the notion of the subrank of a nonnegative matrix and show that it is exactly equal to the size of the maximum induced matching of the bipartite graph defined on the support of the matrix (therefore, independent of the value of entries). Finally, we show that two matrix parameters, namely rank and fractional cover number, belong to the asymptotic spectrum of nonnegative matrices.
For a singular integral equation on an interval of the real line, we study the behavior of the error of a delta-delta discretization. We show that the convergence is non-uniform, between order $O(h^{2})$ in the interior of the interval and a boundary layer where the consistency error does not tend to zero.