亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The nonnegative rank of nonnegative matrices is an important quantity that appears in many fields, such as combinatorial optimization, communication complexity, and information theory. In this paper, we study the asymptotic growth of the nonnegative rank of a fixed nonnegative matrix under Kronecker product. This quantity is called the asymptotic nonnegative rank, which is already studied in information theory. By applying the theory of asymptotic spectra of V. Strassen (J. Reine Angew. Math. 1988), we introduce the asymptotic spectrum of nonnegative matrices and give a dual characterization of the asymptotic nonnegative rank. As the opposite of nonnegative rank, we introduce the notion of the subrank of a nonnegative matrix and show that it is exactly equal to the size of the maximum induced matching of the bipartite graph defined on the support of the matrix (therefore, independent of the value of entries). Finally, we show that two matrix parameters, namely rank and fractional cover number, belong to the asymptotic spectrum of nonnegative matrices.

相關內容

An important dimension of pointer analysis is field-Sensitive, which has been proven to effectively enhance the accuracy of pointer analysis results. A crucial area of research within field-Sensitive is Structure-Sensitive. Structure-Sensitive has been shown to further enhance the precision of pointer analysis. However, existing structure-sensitive methods cannot handle cases where an object possesses multiple structures, even though it's common for an object to have multiple structures throughout its lifecycle. This paper introduces MTO-SS, a flow-sensitive pointer analysis method for objects with multiple structures. Our observation is that it's common for an object to possess multiple structures throughout its lifecycle. The novelty of MTO-SS lies in: MTO-SS introduces Structure-Flow-Sensitive. An object has different structure information at different locations in the program. To ensure the completeness of an object's structure information, MTO-SS always performs weak updates on the object's type. This means that once an object possesses a structure, this structure will accompany the object throughout its lifecycle. We evaluated our method of multi-structured object pointer analysis using the 12 largest programs in GNU Coreutils and compared the experimental results with sparse flow-sensitive method and another method, TYPECLONE, which only allows an object to have one structure information. Our experimental results confirm that MTO-SS is more precise than both sparse flow-sensitive pointer analysis and TYPECLONE, being able to answer, on average, over 22\% more alias queries with a no-alias result compared to the former, and over 3\% more compared to the latter. Additionally, the time overhead introduced by our method is very low.

In contingency table analysis, one is interested in testing whether a model of interest (e.g., the independent or symmetry model) holds using goodness-of-fit tests. When the null hypothesis where the model is true is rejected, the interest turns to the degree to which the probability structure of the contingency table deviates from the model. Many indexes have been studied to measure the degree of the departure, such as the Yule coefficient and Cram\'er coefficient for the independence model, and Tomizawa's symmetry index for the symmetry model. The inference of these indexes is performed using sample proportions, which are estimates of cell probabilities, but it is well-known that the bias and mean square error (MSE) values become large without a sufficient number of samples. To address the problem, this study proposes a new estimator for indexes using Bayesian estimators of cell probabilities. Assuming the Dirichlet distribution for the prior of cell probabilities, we asymptotically evaluate the value of MSE when plugging the posterior means of cell probabilities into the index, and propose an estimator of the index using the Dirichlet hyperparameter that minimizes the value. Numerical experiments show that when the number of samples per cell is small, the proposed method has smaller values of bias and MSE than other methods of correcting estimation accuracy. We also show that the values of bias and MSE are smaller than those obtained by using the uniform and Jeffreys priors.

Feature attribution is a fundamental task in both machine learning and data analysis, which involves determining the contribution of individual features or variables to a model's output. This process helps identify the most important features for predicting an outcome. The history of feature attribution methods can be traced back to General Additive Models (GAMs), which extend linear regression models by incorporating non-linear relationships between dependent and independent variables. In recent years, gradient-based methods and surrogate models have been applied to unravel complex Artificial Intelligence (AI) systems, but these methods have limitations. GAMs tend to achieve lower accuracy, gradient-based methods can be difficult to interpret, and surrogate models often suffer from stability and fidelity issues. Furthermore, most existing methods do not consider users' contexts, which can significantly influence their preferences. To address these limitations and advance the current state-of-the-art, we define a novel feature attribution framework called Context-Aware Feature Attribution Through Argumentation (CA-FATA). Our framework harnesses the power of argumentation by treating each feature as an argument that can either support, attack or neutralize a prediction. Additionally, CA-FATA formulates feature attribution as an argumentation procedure, and each computation has explicit semantics, which makes it inherently interpretable. CA-FATA also easily integrates side information, such as users' contexts, resulting in more accurate predictions.

This work focuses on accelerating the multiplication of a dense random matrix with a (fixed) sparse matrix, which is frequently used in sketching algorithms. We develop a novel scheme that takes advantage of blocking and recomputation (on-the-fly random number generation) to accelerate this operation. The techniques we propose decrease memory movement, thereby increasing the algorithm's parallel scalability in shared memory architectures. On the Intel Frontera architecture, our algorithm can achieve 2x speedups over libraries such as Eigen and Intel MKL on some examples. In addition, with 32 threads, we can obtain a parallel efficiency of up to approximately 45%. We also present a theoretical analysis for the memory movement lower bound of our algorithm, showing that under mild assumptions, it's possible to beat the data movement lower bound of general matrix-matrix multiply (GEMM) by a factor of $\sqrt M$, where $M$ is the cache size. Finally, we incorporate our sketching algorithm into a randomized least squares solver. For extremely over-determined sparse input matrices, we show that our results are competitive with SuiteSparse; in some cases, we obtain a speedup of 10x over SuiteSparse.

The linear varying coefficient models posits a linear relationship between an outcome and covariates in which the covariate effects are modeled as functions of additional effect modifiers. Despite a long history of study and use in statistics and econometrics, state-of-the-art varying coefficient modeling methods cannot accommodate multivariate effect modifiers without imposing restrictive functional form assumptions or involving computationally intensive hyperparameter tuning. In response, we introduce VCBART, which flexibly estimates the covariate effect in a varying coefficient model using Bayesian Additive Regression Trees. With simple default settings, VCBART outperforms existing varying coefficient methods in terms of covariate effect estimation, uncertainty quantification, and outcome prediction. We illustrate the utility of VCBART with two case studies: one examining how the association between later-life cognition and measures of socioeconomic position vary with respect to age and socio-demographics and another estimating how temporal trends in urban crime vary at the neighborhood level. An R package implementing VCBART is available at //github.com/skdeshpande91/VCBART

Bidirectional typing is a discipline in which the typing judgment is decomposed explicitly into inference and checking modes, allowing to control the flow of type information in typing rules and to specify algorithmically how they should be used. Bidirectional typing has been fruitfully studied and bidirectional systems have been developed for many type theories. However, the formal development of bidirectional typing has until now been kept confined to specific theories, with general guidelines remaining informal. In this work, we give a generic account of bidirectional typing for a general class of dependent type theories. This is done by first giving a general definition of type theories (or equivalently, a logical framework), for which we define declarative and bidirectional type systems. We then show, in a theory-independent fashion, that the two systems are equivalent. This equivalence is then explored to establish the decidability of typing for weak normalizing theories, yielding a generic type-checking algorithm that has been implemented in a prototype and used in practice with many theories.

Most identification methods of unknown parameters of linear regression equations (LRE) ensure only boundedness of a parametric error in the presence of additive perturbations, which is almost always unacceptable for practical scenarios. In this paper, a new identification law is proposed to overcome this drawback and guarantee asymptotic convergence of the unknown parameters estimation error to zero in case the mentioned additive perturbation meets special averaging conditions. Theoretical results are illustrated by numerical simulations.

If the Stokes equations are properly discretized, it is known that the Schur complement matrix is spectrally equivalent to the identity matrix. Moreover, in the case of simple geometries, it is often observed that most of its eigenvalues are equal to one. These facts form the basis for the famous Uzawa algorithm. Despite recent progress in developing efficient iterative methods for solving the Stokes problem, the Uzawa algorithm remains popular in science and engineering, especially when accelerated by Krylov subspace methods. However, in complex geometries, the Schur complement matrix can become severely ill-conditioned, having a significant portion of non-unit eigenvalues. This makes the established Uzawa preconditioner inefficient. To explain this behaviour, we examine the Pressure Schur Complement formulation for the staggered finite-difference discretization of the Stokes equations. Firstly, we conjecture that the no-slip boundary conditions are the reason for non-unit eigenvalues of the Schur complement matrix. Secondly, we demonstrate that its condition number increases with increasing the surface-to-volume ratio of the flow domain. As an alternative to the Uzawa preconditioner, we propose using the diffusive SIMPLE preconditioner for geometries with a large surface-to-volume ratio. We show that the latter is much more fast and robust for such geometries. Furthermore, we show that the usage of the SIMPLE preconditioner leads to more accurate practical computation of the permeability of tight porous media. Keywords: Stokes problem, tight geometries, computing permeability, preconditioned Krylov subspace methods

Symmetry is a cornerstone of much of mathematics, and many probability distributions possess symmetries characterized by their invariance to a collection of group actions. Thus, many mathematical and statistical methods rely on such symmetry holding and ostensibly fail if symmetry is broken. This work considers under what conditions a sequence of probability measures asymptotically gains such symmetry or invariance to a collection of group actions. Considering the many symmetries of the Gaussian distribution, this work effectively proposes a non-parametric type of central limit theorem. That is, a Lipschitz function of a high dimensional random vector will be asymptotically invariant to the actions of certain compact topological groups. Applications of this include a partial law of the iterated logarithm for uniformly random points in an $\ell_p^n$-ball and an asymptotic equivalence between classical parametric statistical tests and their randomization counterparts even when invariance assumptions are violated.

Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.

北京阿比特科技有限公司