亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In contingency table analysis, one is interested in testing whether a model of interest (e.g., the independent or symmetry model) holds using goodness-of-fit tests. When the null hypothesis where the model is true is rejected, the interest turns to the degree to which the probability structure of the contingency table deviates from the model. Many indexes have been studied to measure the degree of the departure, such as the Yule coefficient and Cram\'er coefficient for the independence model, and Tomizawa's symmetry index for the symmetry model. The inference of these indexes is performed using sample proportions, which are estimates of cell probabilities, but it is well-known that the bias and mean square error (MSE) values become large without a sufficient number of samples. To address the problem, this study proposes a new estimator for indexes using Bayesian estimators of cell probabilities. Assuming the Dirichlet distribution for the prior of cell probabilities, we asymptotically evaluate the value of MSE when plugging the posterior means of cell probabilities into the index, and propose an estimator of the index using the Dirichlet hyperparameter that minimizes the value. Numerical experiments show that when the number of samples per cell is small, the proposed method has smaller values of bias and MSE than other methods of correcting estimation accuracy. We also show that the values of bias and MSE are smaller than those obtained by using the uniform and Jeffreys priors.

相關內容

In survival analysis, complex machine learning algorithms have been increasingly used for predictive modeling. Given a collection of features available for inclusion in a predictive model, it may be of interest to quantify the relative importance of a subset of features for the prediction task at hand. In particular, in HIV vaccine trials, participant baseline characteristics are used to predict the probability of infection over the intended follow-up period, and investigators may wish to understand how much certain types of predictors, such as behavioral factors, contribute toward overall predictiveness. Time-to-event outcomes such as time to infection are often subject to right censoring, and existing methods for assessing variable importance are typically not intended to be used in this setting. We describe a broad class of algorithm-agnostic variable importance measures for prediction in the context of survival data. We propose a nonparametric efficient estimation procedure that incorporates flexible learning of nuisance parameters, yields asymptotically valid inference, and enjoys double-robustness. We assess the performance of our proposed procedure via numerical simulations and analyze data from the HVTN 702 study to inform enrollment strategies for future HIV vaccine trials.

Differential privacy is often studied under two different models of neighboring datasets: the add-remove model and the swap model. While the swap model is used extensively in the academic literature, many practical libraries use the more conservative add-remove model. However, analysis under the add-remove model can be cumbersome, and obtaining results with tight constants requires some additional work. Here, we study the problem of one-dimensional mean estimation under the add-remove model of differential privacy. We propose a new algorithm and show that it is min-max optimal, that it has the correct constant in the leading term of the mean squared error, and that this constant is the same as the optimal algorithm in the swap model. Our results show that, for mean estimation, the add-remove and swap model give nearly identical error even though the add-remove model cannot treat the size of the dataset as public information. In addition, we demonstrate empirically that our proposed algorithm yields a factor of two improvement in mean squared error over algorithms often used in practice.

We consider the problem of chance constrained optimization where it is sought to optimize a function and satisfy constraints, both of which are affected by uncertainties. The real world declinations of this problem are particularly challenging because of their inherent computational cost. To tackle such problems, we propose a new Bayesian optimization method. It applies to the situation where the uncertainty comes from some of the inputs, so that it becomes possible to define an acquisition criterion in the joint controlled-uncontrolled input space. The main contribution of this work is an acquisition criterion that accounts for both the average improvement in objective function and the constraint reliability. The criterion is derived following the Stepwise Uncertainty Reduction logic and its maximization provides both optimal controlled and uncontrolled parameters. Analytical expressions are given to efficiently calculate the criterion. Numerical studies on test functions are presented. It is found through experimental comparisons with alternative sampling criteria that the adequation between the sampling criterion and the problem contributes to the efficiency of the overall optimization. As a side result, an expression for the variance of the improvement is given.

In Gaussian graphical models, the likelihood equations must typically be solved iteratively. We investigate two algorithms: A version of iterative proportional scaling which avoids inversion of large matrices, and an algorithm based on convex duality and operating on the covariance matrix by neighbourhood coordinate descent, corresponding to the graphical lasso with zero penalty. For large, sparse graphs, the iterative proportional scaling algorithm appears feasible and has simple convergence properties. The algorithm based on neighbourhood coordinate descent is extremely fast and less dependent on sparsity, but needs a positive definite starting value to converge. We give an algorithm for finding such a starting value for graphs with low colouring number. As a consequence, we also obtain a simplified proof for existence of the maximum likelihood estimator in such cases.

Singularly perturbed boundary value problems pose a significant challenge for their numerical approximations because of the presence of sharp boundary layers. These sharp boundary layers are responsible for the stiffness of solutions, which leads to large computational errors, if not properly handled. It is well-known that the classical numerical methods as well as the Physics-Informed Neural Networks (PINNs) require some special treatments near the boundary, e.g., using extensive mesh refinements or finer collocation points, in order to obtain an accurate approximate solution especially inside of the stiff boundary layer. In this article, we modify the PINNs and construct our new semi-analytic SL-PINNs suitable for singularly perturbed boundary value problems. Performing the boundary layer analysis, we first find the corrector functions describing the singular behavior of the stiff solutions inside boundary layers. Then we obtain the SL-PINN approximations of the singularly perturbed problems by embedding the explicit correctors in the structure of PINNs or by training the correctors together with the PINN approximations. Our numerical experiments confirm that our new SL-PINN methods produce stable and accurate approximations for stiff solutions.

We present a parallel algorithm for the fast Fourier transform (FFT) in higher dimensions. This algorithm generalizes the cyclic-to-cyclic one-dimensional parallel algorithm to a cyclic-to-cyclic multidimensional parallel algorithm while retaining the property of needing only a single all-to-all communication step. This is under the constraint that we use at most $\sqrt{N}$ processors for an FFT on an array with a total of $N$ elements, irrespective of the dimension $d$ or the shape of the array. The only assumption we make is that $N$ is sufficiently composite. Our algorithm starts and ends in the same data distribution. We present our multidimensional implementation FFTU which utilizes the sequential FFTW program for its local FFTs, and which can handle any dimension $d$. We obtain experimental results for $d\leq 5$ using MPI on up to 4096 cores of the supercomputer Snellius, comparing FFTU with the parallel FFTW program and with PFFT and heFFTe. These results show that FFTU is competitive with the state of the art and that it allows one to use a larger number of processors, while keeping communication limited to a single all-to-all operation. For arrays of size $1024^3$ and $64^5$, FFTU achieves a speedup of a factor 149 and 176, respectively, on 4096 processors.

This study examines the varying coefficient model in tail index regression. The varying coefficient model is an efficient semiparametric model that avoids the curse of dimensionality when including large covariates in the model. In fact, the varying coefficient model is useful in mean, quantile, and other regressions. The tail index regression is not an exception. However, the varying coefficient model is flexible, but leaner and simpler models are preferred for applications. Therefore, it is important to evaluate whether the estimated coefficient function varies significantly with covariates. If the effect of the non-linearity of the model is weak, the varying coefficient structure is reduced to a simpler model, such as a constant or zero. Accordingly, the hypothesis test for model assessment in the varying coefficient model has been discussed in mean and quantile regression. However, there are no results in tail index regression. In this study, we investigate the asymptotic properties of an estimator and provide a hypothesis testing method for varying coefficient models for tail index regression.

This study elaborates a text-based metric to quantify the unique position of stylized scientific research, characterized by its innovative integration of diverse knowledge components and potential to pivot established scientific paradigms. Our analysis reveals a concerning decline in stylized research, highlighted by its comparative undervaluation in terms of citation counts and protracted peer-review duration. Despite facing these challenges, the disruptive potential of stylized research remains robust, consistently introducing groundbreaking questions and theories. This paper posits that substantive reforms are necessary to incentivize and recognize the value of stylized research, including optimizations to the peer-review process and the criteria for evaluating scientific impact. Embracing these changes may be imperative to halt the downturn in stylized research and ensure enduring scholarly exploration in endless frontiers.

In a one-way analysis-of-variance (ANOVA) model, the number of all pairwise comparisons can be large even when there are only a moderate number of groups. Motivated by this, we consider a regime with a growing number of groups, and prove that for testing pairwise comparisons the BH procedure can offer asymptotic control on false discoveries, despite that the t-statistics involved do not exhibit the well-known positive dependence structure called the PRDS to guarantee exact false discovery rate (FDR) control. Sharing Tukey's viewpoint that the difference in the means of any two groups cannot be exactly zero, our main result is stated in terms of the control on the directional false discovery rate and directional false discovery proportion. A key technical contribution is that we have shown the dependence among the t-statistics to be weak enough to induce a convergence result typically needed for establishing asymptotic FDR control. Our analysis does not adhere to stylized assumptions such as normality, variance homogeneity and a balanced design, and thus provides a theoretical grounding for applications in more general situations.

Finite-dimensional truncations are routinely used to approximate partial differential equations (PDEs), either to obtain numerical solutions or to derive reduced-order models. The resulting discretized equations are known to violate certain physical properties of the system. In particular, first integrals of the PDE may not remain invariant after discretization. Here, we use the method of reduced-order nonlinear solutions (RONS) to ensure that the conserved quantities of the PDE survive its finite-dimensional truncation. In particular, we develop two methods: Galerkin RONS and finite volume RONS. Galerkin RONS ensures the conservation of first integrals in Galerkin-type truncations, whether used for direct numerical simulations or reduced-order modeling. Similarly, finite volume RONS conserves any number of first integrals of the system, including its total energy, after finite volume discretization. Both methods are applicable to general time-dependent PDEs and can be easily incorporated in existing Galerkin-type or finite volume code. We demonstrate the efficacy of our methods on two examples: direct numerical simulations of the shallow water equation and a reduced-order model of the nonlinear Schrodinger equation. As a byproduct, we also generalize RONS to phenomena described by a system of PDEs.

北京阿比特科技有限公司