亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Finding the optimal design of a hydrodynamic or aerodynamic surface is often impossible due to the expense of evaluating the cost functions (say, with computational fluid dynamics) needed to determine the performances of the flows that the surface controls. In addition, inherent limitations of the design space itself due to imposed geometric constraints, conventional parameterization methods, and user bias can restrict {\it all} of the designs within a chosen design space regardless of whether traditional optimization methods or newer, data-driven design algorithms with machine learning are used to search the design space. We present a 2-pronged attack to address these difficulties: we propose (1) a methodology to create the design space using morphing that we call {\it Design-by-Morphing} (DbM); and (2) an optimization algorithm to search that space that uses a novel Bayesian Optimization (BO) strategy that we call {\it Mixed variable, Multi-Objective Bayesian Optimization} (MixMOBO). We apply this shape optimization strategy to maximize the power output of a hydrokinetic turbine. Applying these two strategies in tandem, we demonstrate that we can create a novel, geometrically-unconstrained, design space of a draft tube and hub shape and then optimize them simultaneously with a {\it minimum} number of cost function calls. Our framework is versatile and can be applied to the shape optimization of a variety of fluid problems.

相關內容

Machine learning (ML) models are costly to train as they can require a significant amount of data, computational resources and technical expertise. Thus, they constitute valuable intellectual property that needs protection from adversaries wanting to steal them. Ownership verification techniques allow the victims of model stealing attacks to demonstrate that a suspect model was in fact stolen from theirs. Although a number of ownership verification techniques based on watermarking or fingerprinting have been proposed, most of them fall short either in terms of security guarantees (well-equipped adversaries can evade verification) or computational cost. A fingerprinting technique introduced at ICLR '21, Dataset Inference (DI), has been shown to offer better robustness and efficiency than prior methods. The authors of DI provided a correctness proof for linear (suspect) models. However, in the same setting, we prove that DI suffers from high false positives (FPs) -- it can incorrectly identify an independent model trained with non-overlapping data from the same distribution as stolen. We further prove that DI also triggers FPs in realistic, non-linear suspect models. We then confirm empirically that DI leads to FPs, with high confidence. Second, we show that DI also suffers from false negatives (FNs) -- an adversary can fool DI by regularising a stolen model's decision boundaries using adversarial training, thereby leading to an FN. To this end, we demonstrate that DI fails to identify a model adversarially trained from a stolen dataset -- the setting where DI is the hardest to evade. Finally, we discuss the implications of our findings, the viability of fingerprinting-based ownership verification in general, and suggest directions for future work.

The exact computation of the matching distance for multi-parameter persistence modules is an active area of research in computational topology. Achieving an easily obtainable exact computation of this distance would allow multi-parameter persistent homology to be a viable option for data analysis. In this paper, we provide theoretical results for the computation of the matching distance in two dimensions along with a geometric interpretation of the lines through parameter space realizing this distance. The crucial point of the method we propose is that it can be easily implemented.

Stereo-matching is a fundamental problem in computer vision. Despite recent progress by deep learning, improving the robustness is ineluctable when deploying stereo-matching models to real-world applications. Different from the common practices, i.e., developing an elaborate model to achieve robustness, we argue that collecting multiple available datasets for training is a cheaper way to increase generalization ability. Specifically, this report presents an improved RaftStereo trained with a mixed dataset of seven public datasets for the robust vision challenge (denoted as iRaftStereo_RVC). When evaluated on the training sets of Middlebury, KITTI-2015, and ETH3D, the model outperforms its counterparts trained with only one dataset, such as the popular Sceneflow. After fine-tuning the pre-trained model on the three datasets of the challenge, it ranks at 2nd place on the stereo leaderboard, demonstrating the benefits of mixed dataset pre-training.

We give a method for proactively identifying small, plausible shifts in distribution which lead to large differences in model performance. These shifts are defined via parametric changes in the causal mechanisms of observed variables, where constraints on parameters yield a "robustness set" of plausible distributions and a corresponding worst-case loss over the set. While the loss under an individual parametric shift can be estimated via reweighting techniques such as importance sampling, the resulting worst-case optimization problem is non-convex, and the estimate may suffer from large variance. For small shifts, however, we can construct a local second-order approximation to the loss under shift and cast the problem of finding a worst-case shift as a particular non-convex quadratic optimization problem, for which efficient algorithms are available. We demonstrate that this second-order approximation can be estimated directly for shifts in conditional exponential family models, and we bound the approximation error. We apply our approach to a computer vision task (classifying gender from images), revealing sensitivity to shifts in non-causal attributes.

Traditional monocular Visual Simultaneous Localization and Mapping (vSLAM) systems can be divided into three categories: those that use features, those that rely on the image itself, and hybrid models. In the case of feature-based methods, new research has evolved to incorporate more information from their environment using geometric primitives beyond points, such as lines and planes. This is because in many environments, which are man-made environments, characterized as Manhattan world, geometric primitives such as lines and planes occupy most of the space in the environment. The exploitation of these schemes can lead to the introduction of algorithms capable of optimizing the trajectory of a Visual SLAM system and also helping to construct an exuberant map. Thus, we present a real-time monocular Visual SLAM system that incorporates real-time methods for line and VP extraction, as well as two strategies that exploit vanishing points to estimate the robot's translation and improve its rotation.Particularly, we build on ORB-SLAM2, which is considered the current state-of-the-art solution in terms of both accuracy and efficiency, and extend its formulation to handle lines and VPs to create two strategies the first optimize the rotation and the second refine the translation part from the known rotation. First, we extract VPs using a real-time method and use them for a global rotation optimization strategy. Second, we present a translation estimation method that takes advantage of last-stage rotation optimization to model a linear system. Finally, we evaluate our system on the TUM RGB-D benchmark and demonstrate that the proposed system achieves state-of-the-art results and runs in real time, and its performance remains close to the original ORB-SLAM2 system

Constrained learning is prevalent in many statistical tasks. Recent work proposes distance-to-set penalties to derive estimators under general constraints that can be specified as sets, but focuses on obtaining point estimates that do not come with corresponding measures of uncertainty. To remedy this, we approach distance-to-set regularization from a Bayesian lens. We consider a class of smooth distance-to-set priors, showing that they yield well-defined posteriors toward quantifying uncertainty for constrained learning problems. We discuss relationships and advantages over prior work on Bayesian constraint relaxation. Moreover, we prove that our approach is optimal in an information geometric-sense for finite penalty parameters $\rho$, and enjoys favorable statistical properties when $\rho\to\infty$. The method is designed to perform effectively within gradient-based MCMC samplers, as illustrated on a suite of simulated and real data applications.

Many causal and structural effects depend on regressions. Examples include policy effects, average derivatives, regression decompositions, average treatment effects, causal mediation, and parameters of economic structural models. The regressions may be high dimensional, making machine learning useful. Plugging machine learners into identifying equations can lead to poor inference due to bias from regularization and/or model selection. This paper gives automatic debiasing for linear and nonlinear functions of regressions. The debiasing is automatic in using Lasso and the function of interest without the full form of the bias correction. The debiasing can be applied to any regression learner, including neural nets, random forests, Lasso, boosting, and other high dimensional methods. In addition to providing the bias correction we give standard errors that are robust to misspecification, convergence rates for the bias correction, and primitive conditions for asymptotic inference for estimators of a variety of estimators of structural and causal effects. The automatic debiased machine learning is used to estimate the average treatment effect on the treated for the NSW job training data and to estimate demand elasticities from Nielsen scanner data while allowing preferences to be correlated with prices and income.

Assessing the validity of a real-world system with respect to given quality criteria is a common yet costly task in industrial applications due to the vast number of required real-world tests. Validating such systems by means of simulation offers a promising and less expensive alternative, but requires an assessment of the simulation accuracy and therefore end-to-end measurements. Additionally, covariate shifts between simulations and actual usage can cause difficulties for estimating the reliability of such systems. In this work, we present a validation method that propagates bounds on distributional discrepancy measures through a composite system, thereby allowing us to derive an upper bound on the failure probability of the real system from potentially inaccurate simulations. Each propagation step entails an optimization problem, where -- for measures such as maximum mean discrepancy (MMD) -- we develop tight convex relaxations based on semidefinite programs. We demonstrate that our propagation method yields valid and useful bounds for composite systems exhibiting a variety of realistic effects. In particular, we show that the proposed method can successfully account for data shifts within the experimental design as well as model inaccuracies within the used simulation.

The study of robustness has received much attention due to its inevitability in data-driven settings where many systems face uncertainty. One such example of concern is Bayesian Optimization (BO), where uncertainty is multi-faceted, yet there only exists a limited number of works dedicated to this direction. In particular, there is the work of Kirschner et al. (2020), which bridges the existing literature of Distributionally Robust Optimization (DRO) by casting the BO problem from the lens of DRO. While this work is pioneering, it admittedly suffers from various practical shortcomings such as finite contexts assumptions, leaving behind the main question Can one devise a computationally tractable algorithm for solving this DRO-BO problem? In this work, we tackle this question to a large degree of generality by considering robustness against data-shift in $\phi$-divergences, which subsumes many popular choices, such as the $\chi^2$-divergence, Total Variation, and the extant Kullback-Leibler (KL) divergence. We show that the DRO-BO problem in this setting is equivalent to a finite-dimensional optimization problem which, even in the continuous context setting, can be easily implemented with provable sublinear regret bounds. We then show experimentally that our method surpasses existing methods, attesting to the theoretical results.

A good estimation of the actions' cost is key in task planning for human-robot collaboration. The duration of an action depends on agents' capabilities and the correlation between actions performed simultaneously by the human and the robot. This paper proposes an approach to learning actions' costs and coupling between actions executed concurrently by humans and robots. We leverage the information from past executions to learn the average duration of each action and a synergy coefficient representing the effect of an action performed by the human on the duration of the action performed by the robot (and vice versa). We implement the proposed method in a simulated scenario where both agents can access the same area simultaneously. Safety measures require the robot to slow down when the human is close, denoting a bad synergy of tasks operating in the same area. We show that our approach can learn such bad couplings so that a task planner can leverage this information to find better plans.

北京阿比特科技有限公司