The Bayesian online selection problem aims to design a pricing scheme for a sequence of arriving buyers that maximizes the expected social welfare (or revenue) subject to different structural constraints. Inspired by applications with a hierarchy of service, this paper focuses on the cases where a laminar matroid characterizes the set of served buyers. We give the first Polynomial-Time Approximation Scheme (PTAS) for the problem when the laminar matroid has constant depth. Our approach is based on rounding the solution of a hierarchy of linear programming relaxations that approximate the optimum online solution with any degree of accuracy, plus a concentration argument showing that rounding incurs a small loss. We also study another variation, which we call the production-constrained problem. The allowable set of served buyers is characterized by a collection of production and shipping constraints that form a particular example of a laminar matroid. Using a similar LP-based approach, we design a PTAS for this problem, although in this special case the depth of the underlying laminar matroid is not necessarily a constant. The analysis exploits the negative dependency of the optimum selection rule in the lower levels of the laminar family. Finally, to demonstrate the generality of our technique, we employ the linear programming-based approach employed in the paper to re-derive some of the classic prophet inequalities known in the literature -- as a side result.
We study multi-buyer multi-item sequential item pricing mechanisms for revenue maximization with the goal of approximating a natural fractional relaxation -- the ex ante optimal revenue. We assume that buyers' values are subadditive but make no assumptions on the value distributions. While the optimal revenue, and therefore also the ex ante benchmark, is inapproximable by any simple mechanism in this context, previous work has shown that a weaker benchmark that optimizes over so-called ``buy-many" mechanisms can be approximable. Approximations are known, in particular, for settings with either a single buyer or many unit-demand buyers. We extend these results to the much broader setting of many subadditive buyers. We show that the ex ante buy-many revenue can be approximated via sequential item pricings to within an $O(\log^2 m)$ factor, where $m$ is the number of items. We also show that a logarithmic dependence on $m$ is necessary. Our approximation is achieved through the construction of a new multi-dimensional Online Contention Resolution Scheme (OCRS), that provides an online rounding of the optimal ex ante solution. Chawla et al. arXiv:2204.01962 previously constructed an OCRS for revenue for unit-demand buyers, but their construction relied heavily on the ``almost single dimensional" nature of unit-demand values. Prior to that work, OCRSes have only been studied in the context of social welfare maximization for single-parameter buyers. For the welfare objective, constant-factor approximations have been demonstrated for a wide range of combinatorial constraints on item allocations and classes of buyer valuation functions. Our work opens up the possibility of a similar success story for revenue maximization.
A Model Inversion (MI) attack based on Generative Adversarial Networks (GAN) aims to recover the private training data from complex deep learning models by searching codes in the latent space. However, they merely search a deterministic latent space such that the found latent code is usually suboptimal. In addition, the existing distributional MI schemes assume that an attacker can access the structures and parameters of the target model, which is not always viable in practice. To overcome the above shortcomings, this paper proposes a novel Distributional Black-Box Model Inversion (DBB-MI) attack by constructing the probabilistic latent space for searching the target privacy data. Specifically, DBB-MI does not need the target model parameters or specialized GAN training. Instead, it finds the latent probability distribution by combining the output of the target model with multi-agent reinforcement learning techniques. Then, it randomly chooses latent codes from the latent probability distribution for recovering the private data. As the latent probability distribution closely aligns with the target privacy data in latent space, the recovered data will leak the privacy of training samples of the target model significantly. Abundant experiments conducted on diverse datasets and networks show that the present DBB-MI has better performance than state-of-the-art in attack accuracy, K-nearest neighbor feature distance, and Peak Signal-to-Noise Ratio.
In recent years, badminton analytics has drawn attention due to the advancement of artificial intelligence and the efficiency of data collection. While there is a line of effective applications to improve and investigate player performance, there are only a few public badminton datasets that can be used by researchers outside the badminton domain. Existing badminton singles datasets focus on specific matchups; however, they cannot provide comprehensive studies on different players and various matchups. In this paper, we provide a badminton singles dataset, ShuttleSet22, which is collected from high-ranking matches in 2022. ShuttleSet22 consists of 30,172 strokes in 2,888 rallies in the training set, 1,400 strokes in 450 rallies in the validation set, and 2,040 strokes in 654 rallies in the testing set, with detailed stroke-level metadata within a rally. To benchmark existing work with ShuttleSet22, we hold a challenge, Track 2: Forecasting Future Turn-Based Strokes in Badminton Rallies, at CoachAI Badminton Challenge @ IJCAI 2023, to encourage researchers to tackle this real-world problem through innovative approaches and to summarize insights between the state-of-the-art baseline and improved techniques, exchanging inspiring ideas. The baseline codes and the dataset are made available at //github.com/wywyWang/CoachAI-Projects/tree/main/CoachAI-Challenge-IJCAI2023.
We present a novel Graph-based debiasing Algorithm for Underreported Data (GRAUD) aiming at an efficient joint estimation of event counts and discovery probabilities across spatial or graphical structures. This innovative method provides a solution to problems seen in fields such as policing data and COVID-$19$ data analysis. Our approach avoids the need for strong priors typically associated with Bayesian frameworks. By leveraging the graph structures on unknown variables $n$ and $p$, our method debiases the under-report data and estimates the discovery probability at the same time. We validate the effectiveness of our method through simulation experiments and illustrate its practicality in one real-world application: police 911 calls-to-service data.
The emergence of WebAssembly allows attackers to hide the malicious functionalities of JavaScript malware in cross-language interoperations, termed JavaScript-WebAssembly multilingual malware (JWMM). However, existing anti-virus solutions based on static program analysis are still limited to monolingual code. As a result, their detection effectiveness decreases significantly against JWMM. The detection of JWMM is challenging due to the complex interoperations and semantic diversity between JavaScript and WebAssembly. To bridge this gap, we present JWBinder, the first technique aimed at enhancing the static detection of JWMM. JWBinder performs a language-specific data-flow analysis to capture the cross-language interoperations and then characterizes the functionalities of JWMM through a unified high-level structure called Inter-language Program Dependency Graph. The extensive evaluation on one of the most representative real-world anti-virus platforms, VirusTotal, shows that \system effectively enhances anti-virus systems from various vendors and increases the overall successful detection rate against JWMM from 49.1\% to 86.2\%. Additionally, we assess the side effects and runtime overhead of JWBinder, corroborating its practical viability in real-world applications.
Graph Neural Networks (GNNs) offer a compact and computationally efficient way to learn embeddings and classifications on graph data. GNN models are frequently large, making distributed minibatch training necessary. The primary contribution of this paper is new methods for reducing communication in the sampling step for distributed GNN training. Here, we propose a matrix-based bulk sampling approach that expresses sampling as a sparse matrix multiplication (SpGEMM) and samples multiple minibatches at once. When the input graph topology does not fit on a single device, our method distributes the graph and use communication-avoiding SpGEMM algorithms to scale GNN minibatch sampling, enabling GNN training on much larger graphs than those that can fit into a single device memory. When the input graph topology (but not the embeddings) fits in the memory of one GPU, our approach (1) performs sampling without communication, (2) amortizes the overheads of sampling a minibatch, and (3) can represent multiple sampling algorithms by simply using different matrix constructions. In addition to new methods for sampling, we introduce a pipeline that uses our matrix-based bulk sampling approach to provide end-to-end training results. We provide experimental results on the largest Open Graph Benchmark (OGB) datasets on $128$ GPUs, and show that our pipeline is $2.5\times$ faster than Quiver (a distributed extension to PyTorch-Geometric) on a $3$-layer GraphSAGE network. On datasets outside of OGB, we show a $8.46\times$ speedup on $128$ GPUs in per-epoch time. Finally, we show scaling when the graph is distributed across GPUs and scaling for both node-wise and layer-wise sampling algorithms.
Parallelisation in Bayesian optimisation is a common strategy but faces several challenges: the need for flexibility in acquisition functions and kernel choices, flexibility dealing with discrete and continuous variables simultaneously, model misspecification, and lastly fast massive parallelisation. To address these challenges, we introduce a versatile and modular framework for batch Bayesian optimisation via probabilistic lifting with kernel quadrature, called SOBER, which we present as a Python library based on GPyTorch/BoTorch. Our framework offers the following unique benefits: (1) Versatility in downstream tasks under a unified approach. (2) A gradient-free sampler, which does not require the gradient of acquisition functions, offering domain-agnostic sampling (e.g., discrete and mixed variables, non-Euclidean space). (3) Flexibility in domain prior distribution. (4) Adaptive batch size (autonomous determination of the optimal batch size). (5) Robustness against a misspecified reproducing kernel Hilbert space. (6) Natural stopping criterion.
For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.
Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.