亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The development of large, software-intensive systems is a complex undertaking that we generally tackle by a divide and conquer strategy. Companies thereby face the challenge of coordinating individual aspects of software development, in particular between requirements engineering (RE) and software testing (ST). A lack of REST alignment can not only lead to wasted effort but also to defective software. However, before a company can improve the mechanisms of coordination they need to be understood first. With REST-bench we aim at providing an assessment tool that illustrates the coordination in software development projects and identify concrete improvement opportunities. We have developed REST-bench on the sound fundamentals of a taxonomy on REST alignment methods and validated the method in five case studies. Following the principles of technical action research, we collaborated with five companies, applying REST-bench and iteratively improving the method based on the lessons we learned. We applied REST-bench both in Agile and plan-driven environments, in projects lasting from weeks to years, and staffed as large as 1000 employees. The improvement opportunities we identified and the feedback we received indicate that the assessment was effective and efficient. Furthermore, participants confirmed that their understanding on the coordination between RE and ST improved.

相關內容

該雜志提供了一個重點,傳播關于軟件密集型信息系統或應用程序需求的獲取、表示和驗證的新結果。歡迎提交理論和應用性意見,但所有文件都必須明確說明: - 這些思想對復雜系統設計的實際影響 - 思考型實踐者應該如何評價這些想法 《華爾街日報》的動機是一種多學科的觀點,這種觀點不僅考慮了軟件組件規范方面的需求,而且還考慮了在組織和社會環境中進行的激發、表示和同意需求的活動。為此,人們從軟件工程、信息系統、職業社會學、認知和組織心理學、人機交互、計算機支持的合作工作、語言學和哲學等領域尋求貢獻,以解決具體的需求工程問題。官網鏈接:

Gaussian processes (GP) regression has gained substantial popularity in machine learning applications. The behavior of a GP regression depends on the choice of covariance function. Stationary covariance functions are favorite in machine learning applications. However, (non-periodic) stationary covariance functions are always mean reverting and can therefore exhibit pathological behavior when applied to data that does not relax to a fixed global mean value. In this paper, we show that it is possible to use improper GP prior with infinite variance to define processes that are stationary but not mean reverting. To this aim, we introduce a large class of improper kernels that can only be defined in this improper regime. Specifically, we introduce the Smooth Walk kernel, which produces infinitely smooth samples, and a family of improper Mat\'ern kernels, which can be defined to be $j$-times differentiable for any integer $j$. The resulting posterior distributions can be computed analytically and it involves a simple correction of the usual formulas. By analyzing both synthetic and real data, we demonstrate that these improper kernels solve some known pathologies of mean reverting GP regression while retaining most of the favourable properties of ordinary smooth stationary kernels.

Pricing insurance for risks associated with information technology systems presents a complex modelling challenge, combining the disciplines of operations management, security, and economics. This work proposes a socioeconomic modelling framework for cyber-insurance decisions compromised of entity relationship diagrams, security maturity models, and economic models, addressing a long-standing research challenge of capturing organizational structure in the design and pricing of cyber-insurance policies. Insurance pricing is usually informed by the long experience insurance companies have of the magnitude and frequency of losses that arise in organizations based on their size, industry sector, and location. Consequently, their calculations of premia will start from a baseline determined by these considerations. A unique challenge of cyber-insurance is that data history is limited and not necessarily informative of future loss risk meaning that established actuarial methodology for other lines of insurance may not be the optimal pricing strategy. The modelling framework proposed in this paper provides a vehicle for agreement between practitioners in the cyber-insurance ecosystem on cyber-security risks and allows for the users to choose their desired level of abstraction in the description of a system.

When analyzing data researchers make some decisions that are either arbitrary, based on subjective beliefs about the data generating process, or for which equally justifiable alternative choices could have been made. This wide range of data-analytic choices can be abused, and has been one of the underlying causes of the replication crisis in several fields. Recently, the introduction of multiverse analysis provides researchers with a method to evaluate the stability of the results across reasonable choices that could be made when analyzing data. Multiverse analysis is confined to a descriptive role, lacking a proper and comprehensive inferential procedure. Recently, specification curve analysis adds an inferential procedure to multiverse analysis, but this approach is limited to simple cases related to the linear model, and only allows researchers to infer whether at least one specification rejects the null hypothesis, but not which specifications should be selected. In this paper we present a Post-selection Inference approach to Multiverse Analysis (PIMA) which is a flexible and general inferential approach that accounts for all possible models, i.e., the multiverse of reasonable analyses. The approach allows for a wide range of data specifications (i.e. pre-processing) and any generalized linear model; it allows testing the null hypothesis of a given predictor not being associated with the outcome, by merging information from all reasonable models of multiverse analysis, and provides strong control of the family-wise error rate such that it allows researchers to claim that the null-hypothesis can be rejected for each specification that shows a significant effect. The inferential proposal is based on a conditional resampling procedure. To be continued...

NVIDIA researchers have pioneered an explicit method, position-based dynamics (PBD), for simulating systems with contact forces, gaining widespread use in computer graphics and animation. While the method yields visually compelling real-time simulations with surprising numerical stability, its scientific validity has been questioned due to a lack of rigorous analysis. In this paper, we introduce a new mathematical convergence analysis specifically tailored for PBD applied to first-order dynamics. Utilizing newly derived bounds for projections onto uniformly prox-regular sets, our proof extends classical compactness arguments. Our work paves the way for the reliable application of PBD in various scientific and engineering fields, including particle simulations with volume exclusion, agent-based models in mathematical biology or inequality-constrained gradient-flow models.

Expecting intelligent machines to efficiently work in real world requires a new method to understand unstructured information in unknown environments with good accuracy, scalability and generalization, like human. Here, a memristive neural computing based perceptual signal differential processing and learning method for intelligent machines is presented, via extracting main features of environmental information and applying associated encoded stimuli to memristors, we successfully obtain human-like ability in processing unstructured environmental information, such as amplification (>720%) and adaptation (<50%) of mechanical stimuli. The method also exhibits good scalability and generalization, validated in two typical applications of intelligent machines: object grasping and autonomous driving. In the former, a robot hand experimentally realizes safe and stable grasping, through learning unknown object features (e.g., sharp corner and smooth surface) with a single memristor in 1 ms. In the latter, the decision-making information of 10 unstructured environments in autonomous driving (e.g., overtaking cars, pedestrians) are accurately (94%) extracted with a 40x25 memristor array. By mimicking the intrinsic nature of human low-level perception mechanisms in electronic memristive neural circuits, the proposed method is adaptable to diverse sensing technologies, helping intelligent machines to generate smart high-level decisions in real world.

Artificial intelligence (AI) and machine learning (ML) are increasingly integrated into the functioning of physical and digital products, creating unprecedented opportunities for interaction and functionality. However, there is a challenge for designers to ideate within this creative landscape, balancing the possibilities of technology with human interactional concerns. We investigate techniques for exploring and reflecting on the interactional affordances, the unique relational possibilities, and the wider social implications of AI systems. We introduced into an interaction design course (n=100) nine 'AI exercises' that draw on more than human design, responsible AI, and speculative enactment to create experiential engagements around AI interaction design. We find that exercises around metaphors and enactments make questions of training and learning, privacy and consent, autonomy and agency more tangible, and thereby help students be more reflective and responsible on how to design with AI and its complex properties in both their design process and outcomes.

In this article, we propose an interval constraint programming method for globally solving catalog-based categorical optimization problems. It supports catalogs of arbitrary size and properties of arbitrary dimension, and does not require any modeling effort from the user. A novel catalog-based contractor (or filtering operator) guarantees consistency between the categorical properties and the existing catalog items. This results in an intuitive and generic approach that is exact, rigorous (robust to roundoff errors) and can be easily implemented in an off-the-shelf interval-based continuous solver that interleaves branching and constraint propagation. We demonstrate the validity of the approach on a numerical problem in which a categorical variable is described by a two-dimensional property space. A Julia prototype is available as open-source software under the MIT license at //github.com/cvanaret/CateGOrical.jl

Data-driven algorithm design is a promising, learning-based approach for beyond worst-case analysis of algorithms with tunable parameters. An important open problem is the design of computationally efficient data-driven algorithms for combinatorial algorithm families with multiple parameters. As one fixes the problem instance and varies the parameters, the "dual" loss function typically has a piecewise-decomposable structure, i.e. is well-behaved except at certain sharp transition boundaries. In this work we initiate the study of techniques to develop efficient ERM learning algorithms for data-driven algorithm design by enumerating the pieces of the sum dual loss functions for a collection of problem instances. The running time of our approach scales with the actual number of pieces that appear as opposed to worst case upper bounds on the number of pieces. Our approach involves two novel ingredients -- an output-sensitive algorithm for enumerating polytopes induced by a set of hyperplanes using tools from computational geometry, and an execution graph which compactly represents all the states the algorithm could attain for all possible parameter values. We illustrate our techniques by giving algorithms for pricing problems, linkage-based clustering and dynamic-programming based sequence alignment.

Federated learning is a distributed learning framework that allows a set of clients to collaboratively train a model under the orchestration of a central server, without sharing raw data samples. Although in many practical scenarios the derivatives of the objective function are not available, only few works have considered the federated zeroth-order setting, in which functions can only be accessed through a budgeted number of point evaluations. In this work we focus on convex optimization and design the first federated zeroth-order algorithm to estimate the curvature of the global objective, with the purpose of achieving superlinear convergence. We take an incremental Hessian estimator whose error norm converges linearly, and we adapt it to the federated zeroth-order setting, sampling the random search directions from the Stiefel manifold for improved performance. In particular, both the gradient and Hessian estimators are built at the central server in a communication-efficient and privacy-preserving way by leveraging synchronized pseudo-random number generators. We provide a theoretical analysis of our algorithm, named FedZeN, proving local quadratic convergence with high probability and global linear convergence up to zeroth-order precision. Numerical simulations confirm the superlinear convergence rate and show that our algorithm outperforms the federated zeroth-order methods available in the literature.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

北京阿比特科技有限公司