In this work, we study the problem of global optimization in univariate loss functions, where we analyze the regret of the popular lower bounding algorithms (e.g., Piyavskii-Shubert algorithm). For any given time $T$, instead of the widely available simple regret (which is the difference of the losses between the best estimation up to $T$ and the global optimizer), we study the cumulative regret up to that time. With a suitable lower bounding algorithm, we show that it is possible to achieve satisfactory cumulative regret bounds for different classes of functions. For Lipschitz continuous functions with the parameter $L$, we show that the cumulative regret is $O(L\log T)$. For Lipschitz smooth functions with the parameter $H$, we show that the cumulative regret is $O(H)$. We also analytically extend our results for a broader class of functions that covers both the Lipschitz continuous and smooth functions individually.
We consider a variant of inexact Newton Method, called Newton-MR, in which the least-squares sub-problems are solved approximately using Minimum Residual method. By construction, Newton-MR can be readily applied for unconstrained optimization of a class of non-convex problems known as invex, which subsumes convexity as a sub-class. For invex optimization, instead of the classical Lipschitz continuity assumptions on gradient and Hessian, Newton-MR's global convergence can be guaranteed under a weaker notion of joint regularity of Hessian and gradient. We also obtain Newton-MR's problem-independent local convergence to the set of minima. We show that fast local/global convergence can be guaranteed under a novel inexactness condition, which, to our knowledge, is much weaker than the prior related works. Numerical results demonstrate the performance of Newton-MR as compared with several other Newton-type alternatives on a few machine learning problems.
We study the problem of algorithmically optimizing the Hamiltonian $H_N$ of a spherical or Ising mixed $p$-spin glass. The maximum asymptotic value $\mathsf{OPT}$ of $H_N/N$ is characterized by a variational principle known as the Parisi formula, proved first by Talagrand and in more generality by Panchenko. Recently developed approximate message passing algorithms efficiently optimize $H_N/N$ up to a value $\mathsf{ALG}$ given by an extended Parisi formula, which minimizes over a larger space of functional order parameters. These two objectives are equal for spin glasses exhibiting a no overlap gap property. However, $\mathsf{ALG} < \mathsf{OPT}$ can also occur, and no efficient algorithm producing an objective value exceeding $\mathsf{ALG}$ is known. We prove that for mixed even $p$-spin models, no algorithm satisfying an overlap concentration property can produce an objective larger than $\mathsf{ALG}$ with non-negligible probability. This property holds for all algorithms with suitably Lipschitz dependence on the disorder coefficients of $H_N$. It encompasses natural formulations of gradient descent, approximate message passing, and Langevin dynamics run for bounded time and in particular includes the algorithms achieving $\mathsf{ALG}$ mentioned above. To prove this result, we substantially generalize the overlap gap property framework introduced by Gamarnik and Sudan to arbitrary ultrametric forbidden structures of solutions.
We present symbolic and numerical methods for computing Poisson brackets on the spaces of measures with positive densities of the plane, the 2-torus, and the 2-sphere. We apply our methods to compute symplectic areas of finite regions for the case of the 2-sphere, including an explicit example for Gaussian measures with positive densities.
Differentiable architecture search (DARTS) has been a popular one-shot paradigm for NAS due to its high efficiency. It introduces trainable architecture parameters to represent the importance of candidate operations and proposes first/second-order approximation to estimate their gradients, making it possible to solve NAS by gradient descent algorithm. However, our in-depth empirical results show that the approximation will often distort the loss landscape, leading to the biased objective to optimize and in turn inaccurate gradient estimation for architecture parameters. This work turns to zero-order optimization and proposes a novel NAS scheme, called ZARTS, to search without enforcing the above approximation. Specifically, three representative zero-order optimization methods are introduced: RS, MGS, and GLD, among which MGS performs best by balancing the accuracy and speed. Moreover, we explore the connections between RS/MGS and gradient descent algorithm and show that our ZARTS can be seen as a robust gradient-free counterpart to DARTS. Extensive experiments on multiple datasets and search spaces show the remarkable performance of our method. In particular, results on 12 benchmarks verify the outstanding robustness of ZARTS, where the performance of DARTS collapses due to its known instability issue. Also, we search on the search space of DARTS to compare with peer methods, and our discovered architecture achieves 97.54% accuracy on CIFAR-10 and 75.7% top-1 accuracy on ImageNet, which are state-of-the-art performance.
In this paper, for POMDPs, we provide the convergence of a Q learning algorithm for control policies using a finite history of past observations and control actions, and, consequentially, we establish near optimality of such limit Q functions under explicit filter stability conditions. We present explicit error bounds relating the approximation error to the length of the finite history window. We establish the convergence of such Q-learning iterations under mild ergodicity assumptions on the state process during the exploration phase. We further show that the limit fixed point equation gives an optimal solution for an approximate belief-MDP. We then provide bounds on the performance of the policy obtained using the limit Q values compared to the performance of the optimal policy for the POMDP, where we also present explicit conditions using recent results on filter stability in controlled POMDPs. While there exist many experimental results, (i) the rigorous asymptotic convergence (to an approximate MDP value function) for such finite-memory Q-learning algorithms, and (ii) the near optimality with an explicit rate of convergence (in the memory size) are results that are new to the literature, to our knowledge.
We show that it is provable in PA that there is an arithmetically definable sequence $\{\phi_{n}:n \in \omega\}$ of $\Pi^{0}_{2}$-sentences, such that - PRA+$\{\phi_{n}:n \in \omega\}$ is $\Pi^{0}_{2}$-sound and $\Pi^{0}_{1}$-complete - the length of $\phi_{n}$ is bounded above by a polynomial function of $n$ with positive leading coefficient - PRA+$\phi_{n+1}$ always proves 1-consistency of PRA+$\phi_{n}$. One has that the growth in logical strength is in some sense "as fast as possible", manifested in the fact that the total general recursive functions whose totality is asserted by the true $\Pi^{0}_{2}$-sentences in the sequence are cofinal growth-rate-wise in the set of all total general recursive functions. We then develop an argument which makes use of a sequence of sentences constructed by an application of the diagonal lemma, which are generalisations in a broad sense of Hugh Woodin's "Tower of Hanoi" construction as outlined in his essay "Tower of Hanoi" in Chapter 18 of the anthology "Truth in Mathematics". The argument establishes the result that it is provable in PA that $P \neq NP$. We indicate how to pull the argument all the way down into EFA.
This paper aims to explore models based on the extreme gradient boosting (XGBoost) approach for business risk classification. Feature selection (FS) algorithms and hyper-parameter optimizations are simultaneously considered during model training. The five most commonly used FS methods including weight by Gini, weight by Chi-square, hierarchical variable clustering, weight by correlation, and weight by information are applied to alleviate the effect of redundant features. Two hyper-parameter optimization approaches, random search (RS) and Bayesian tree-structured Parzen Estimator (TPE), are applied in XGBoost. The effect of different FS and hyper-parameter optimization methods on the model performance are investigated by the Wilcoxon Signed Rank Test. The performance of XGBoost is compared to the traditionally utilized logistic regression (LR) model in terms of classification accuracy, area under the curve (AUC), recall, and F1 score obtained from the 10-fold cross validation. Results show that hierarchical clustering is the optimal FS method for LR while weight by Chi-square achieves the best performance in XG-Boost. Both TPE and RS optimization in XGBoost outperform LR significantly. TPE optimization shows a superiority over RS since it results in a significantly higher accuracy and a marginally higher AUC, recall and F1 score. Furthermore, XGBoost with TPE tuning shows a lower variability than the RS method. Finally, the ranking of feature importance based on XGBoost enhances the model interpretation. Therefore, XGBoost with Bayesian TPE hyper-parameter optimization serves as an operative while powerful approach for business risk modeling.
We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.
In this paper we study the frequentist convergence rate for the Latent Dirichlet Allocation (Blei et al., 2003) topic models. We show that the maximum likelihood estimator converges to one of the finitely many equivalent parameters in Wasserstein's distance metric at a rate of $n^{-1/4}$ without assuming separability or non-degeneracy of the underlying topics and/or the existence of more than three words per document, thus generalizing the previous works of Anandkumar et al. (2012, 2014) from an information-theoretical perspective. We also show that the $n^{-1/4}$ convergence rate is optimal in the worst case.
We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.