We anticipate increased instances of humans and AI systems working together in what we refer to as a hybrid team. The increase in collaboration is expected as AI systems gain proficiency and their adoption becomes more widespread. However, their behavior is not error-free, making hybrid teams a very suitable solution. As such, we consider methods for improving performance for these teams of humans and AI systems. For hybrid teams, we will refer to both the humans and AI systems as agents. To improve team performance over that seen for agents operating individually, we propose a manager which learns, through a standard Reinforcement Learning scheme, how to best delegate, over time, the responsibility of taking a decision to any of the agents. We further guide the manager's learning so they also minimize how many changes in delegation are made resulting from undesirable team behavior. We demonstrate the optimality of our manager's performance in several grid environments which include failure states which terminate an episode and should be avoided. We perform our experiments with teams of agents with varying degrees of acceptable risk, in the form of proximity to a failure state, and measure the manager's ability to make effective delegation decisions with respect to its own risk-based constraints, then compare these to the optimal decisions. Our results show our manager can successfully learn desirable delegations which result in team paths near/exactly optimal with respect to path length and number of delegations.
Creating artistic 3D scenes can be time-consuming and requires specialized knowledge. To address this, recent works such as ARF, use a radiance field-based approach with style constraints to generate 3D scenes that resemble a style image provided by the user. However, these methods lack fine-grained control over the resulting scenes. In this paper, we introduce Controllable Artistic Radiance Fields (CoARF), a novel algorithm for controllable 3D scene stylization. CoARF enables style transfer for specified objects, compositional 3D style transfer and semantic-aware style transfer. We achieve controllability using segmentation masks with different label-dependent loss functions. We also propose a semantic-aware nearest neighbor matching algorithm to improve the style transfer quality. Our extensive experiments demonstrate that CoARF provides user-specified controllability of style transfer and superior style transfer quality with more precise feature matching.
With recent legislation on the right to be forgotten, machine unlearning has emerged as a crucial research area. It facilitates the removal of a user's data from federated trained machine learning models without the necessity for retraining from scratch. However, current machine unlearning algorithms are confronted with challenges of efficiency and validity. To address the above issues, we propose a new framework, named Goldfish. It comprises four modules: basic model, loss function, optimization, and extension. To address the challenge of low validity in existing machine unlearning algorithms, we propose a novel loss function. It takes into account the loss arising from the discrepancy between predictions and actual labels in the remaining dataset. Simultaneously, it takes into consideration the bias of predicted results on the removed dataset. Moreover, it accounts for the confidence level of predicted results. Additionally, to enhance efficiency, we adopt knowledge a distillation technique in the basic model and introduce an optimization module that encompasses the early termination mechanism guided by empirical risk and the data partition mechanism. Furthermore, to bolster the robustness of the aggregated model, we propose an extension module that incorporates a mechanism using adaptive distillation temperature to address the heterogeneity of user local data and a mechanism using adaptive weight to handle the variety in the quality of uploaded models. Finally, we conduct comprehensive experiments to illustrate the effectiveness of proposed approach.
Motivated by multi-domain Service Function Chain (SFC) orchestration, we define the Shortest-Longest Path (SLP) problem, prove its hardness, and design an efficient Fully Polynomial Time Approximation Scheme (FPTAS) using the scaling and rounding technique to compute an approximation solution with provable performance guarantee. The SLP problem and its solution algorithm have theoretical significance in multicriteria optimization and also have application potential in QoS routing and multi-domain network resource allocation scenarios.
We consider a Multi-Agent Path Finding (MAPF) setting where agents have been assigned a plan, but during its execution some agents are delayed. Instead of replanning from scratch when such a delay occurs, we propose delay introduction, whereby we delay some additional agents so that the remainder of the plan can be executed safely. We show that finding the minimum number of additional delays is APX-Hard, i.e., it is NP-Hard to find a $(1+\varepsilon)$-approximation for some $\varepsilon>0$. However, in practice we can find optimal delay-introductions using Conflict-Based Search for very large numbers of agents, and both planning time and the resulting length of the plan are comparable, and sometimes outperform the state-of-the-art heuristics for replanning.
Edge artificial intelligence (AI) has been a promising solution towards 6G to empower a series of advanced techniques such as digital twins, holographic projection, semantic communications, and auto-driving, for achieving intelligence of everything. The performance of edge AI tasks, including edge learning and edge AI inference, depends on the quality of three highly coupled processes, i.e., sensing for data acquisition, computation for information extraction, and communication for information transmission. However, these three modules need to compete for network resources for enhancing their own quality-of-services. To this end, integrated sensing-communication-computation (ISCC) is of paramount significance for improving resource utilization as well as achieving the customized goals of edge AI tasks. By investigating the interplay among the three modules, this article presents various kinds of ISCC schemes for federated edge learning tasks and edge AI inference tasks in both application and physical layers.
Micro-expressions (MEs) are involuntary movements revealing people's hidden feelings, which has attracted numerous interests for its objectivity in emotion detection. However, despite its wide applications in various scenarios, micro-expression recognition (MER) remains a challenging problem in real life due to three reasons, including (i) data-level: lack of data and imbalanced classes, (ii) feature-level: subtle, rapid changing, and complex features of MEs, and (iii) decision-making-level: impact of individual differences. To address these issues, we propose a dual-branch meta-auxiliary learning method, called LightmanNet, for fast and robust micro-expression recognition. Specifically, LightmanNet learns general MER knowledge from limited data through a dual-branch bi-level optimization process: (i) In the first level, it obtains task-specific MER knowledge by learning in two branches, where the first branch is for learning MER features via primary MER tasks, while the other branch is for guiding the model obtain discriminative features via auxiliary tasks, i.e., image alignment between micro-expressions and macro-expressions since their resemblance in both spatial and temporal behavioral patterns. The two branches of learning jointly constrain the model of learning meaningful task-specific MER knowledge while avoiding learning noise or superficial connections between MEs and emotions that may damage its generalization ability. (ii) In the second level, LightmanNet further refines the learned task-specific knowledge, improving model generalization and efficiency. Extensive experiments on various benchmark datasets demonstrate the superior robustness and efficiency of LightmanNet.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.