亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Brain tumors are collections of abnormal cells that can develop into masses or clusters. Because they have the potential to infiltrate other tissues, they pose a risk to the patient. The main imaging technique used, MRI, may be able to identify a brain tumor with accuracy. The fast development of Deep Learning methods for use in computer vision applications has been facilitated by a vast amount of training data and improvements in model construction that offer better approximations in a supervised setting. The need for these approaches has been the main driver of this expansion. Deep learning methods have shown promise in improving the precision of brain tumor detection and classification using magnetic resonance imaging (MRI). The study on the use of deep learning techniques, especially ResNet50, for brain tumor identification is presented in this abstract. As a result, this study investigates the possibility of automating the detection procedure using deep learning techniques. In this study, I utilized five transfer learning models which are VGG16, VGG19, DenseNet121, ResNet50 and YOLO V4 where ResNet50 provide the best or highest accuracy 99.54%. The goal of the study is to guide researchers and medical professionals toward powerful brain tumor detecting systems by employing deep learning approaches by way of this evaluation and analysis.

相關內容

Complex emotion recognition is a cognitive task that has so far eluded the same excellent performance of other tasks that are at or above the level of human cognition. Emotion recognition through facial expressions is particularly difficult due to the complexity of emotions expressed by the human face. For a machine to approach the same level of performance in complex facial expression recognition as a human, it may need to synthesise knowledge and understand new concepts in real-time, as humans do. Humans are able to learn new concepts using only few examples by distilling important information from memories. Inspired by human cognition and learning, we propose a novel continual learning method for complex facial expression recognition that can accurately recognise new compound expression classes using few training samples, by building on and retaining its knowledge of basic expression classes. In this work, we also use GradCAM visualisations to demonstrate the relationship between basic and compound facial expressions. Our method leverages this relationship through knowledge distillation and a novel Predictive Sorting Memory Replay, to achieve the current state-of-the-art in continual learning for complex facial expression recognition, with 74.28% Overall Accuracy on new classes. We also demonstrate that using continual learning for complex facial expression recognition achieves far better performance than non-continual learning methods, improving on state-of-the-art non-continual learning methods by 13.95%. Our work is also the first to apply few-shot learning to complex facial expression recognition, achieving the state-of-the-art with 100% accuracy using only a single training sample per class.

Large-scale datasets are increasingly being used to inform decision making. While this effort aims to ground policy in real-world evidence, challenges have arisen as selection bias and other forms of distribution shifts often plague observational data. Previous attempts to provide robust inference have given guarantees depending on a user-specified amount of possible distribution shift (e.g., the maximum KL divergence between the observed and target distributions). However, decision makers will often have additional knowledge about the target distribution which constrains the kind of possible shifts. To leverage such information, we propose a framework that enables statistical inference in the presence of selection bias which obeys user-specified constraints in the form of functions whose expectation is known under the target distribution. The output is high-probability bounds on the value of an estimand for the target distribution. Hence, our method leverages domain knowledge in order to partially identify a wide class of estimands. We analyze the computational and statistical properties of methods to estimate these bounds and show that our method can produce informative bounds on a variety of simulated and semisynthetic tasks, as well as in a real-world use case.

Under model misspecification, it is known that Bayesian posteriors often do not properly quantify uncertainty about true or pseudo-true parameters. Even more fundamentally, misspecification leads to a lack of reproducibility in the sense that the same model will yield contradictory posteriors on independent data sets from the true distribution. To define a criterion for reproducible uncertainty quantification under misspecification, we consider the probability that two confidence sets constructed from independent data sets have nonempty overlap, and we establish a lower bound on this overlap probability that holds for any valid confidence sets. We prove that credible sets from the standard posterior can strongly violate this bound, particularly in high-dimensional settings (i.e., with dimension increasing with sample size), indicating that it is not internally coherent under misspecification. To improve reproducibility in an easy-to-use and widely applicable way, we propose to apply bagging to the Bayesian posterior ("BayesBag"'); that is, to use the average of posterior distributions conditioned on bootstrapped datasets. We motivate BayesBag from first principles based on Jeffrey conditionalization and show that the bagged posterior typically satisfies the overlap lower bound. Further, we prove a Bernstein--Von Mises theorem for the bagged posterior, establishing its asymptotic normal distribution. We demonstrate the benefits of BayesBag via simulation experiments and an application to crime rate prediction.

Dementia, a prevalent neurodegenerative condition, is a major manifestation of Alzheimer's disease (AD). As the condition progresses from mild to severe, it significantly impairs the individual's ability to perform daily tasks independently, necessitating the need for timely and accurate AD classification. Machine learning or deep learning models have emerged as effective tools for this purpose. In this study, we suggested an approach for classifying the four stages of dementia using RF, SVM, and CNN algorithms, augmented with watershed segmentation for feature extraction from MRI images. Our results reveal that SVM with watershed features achieves an impressive accuracy of 96.25%, surpassing other classification methods. The ADNI dataset is utilized to evaluate the effectiveness of our method, and we observed that the inclusion of watershed segmentation contributes to the enhanced performance of the models.

Shapley values have emerged as a widely accepted and trustworthy tool, grounded in theoretical axioms, for addressing challenges posed by black-box models like deep neural networks. However, computing Shapley values encounters exponential complexity in the number of features. Various approaches, including ApproSemivalue, KernelSHAP, and FastSHAP, have been explored to expedite the computation. We analyze the consistency of existing works and conclude that stochastic estimators can be unified as the linear transformation of importance sampling of feature subsets. Based on this, we investigate the possibility of designing simple amortized estimators and propose a straightforward and efficient one, SimSHAP, by eliminating redundant techniques. Extensive experiments conducted on tabular and image datasets validate the effectiveness of our SimSHAP, which significantly accelerates the computation of accurate Shapley values.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司