亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we exploit a result in point process theory, knowing the expected value of the $K$-function weighted by the true first-order intensity function. This theoretical result can serve as an estimation method for obtaining the parameters estimates of a specific model, assumed for the data. The motivation is to generally avoid dealing with the complex likelihoods of some complex point processes models and their maximization. This can be more evident when considering the local second-order characteristics, since the proposed method can estimate the vector of the local parameters, one for each point of the analysed point pattern. We illustrate the method through simulation studies for both purely spatial and spatio-temporal point processes.

相關內容

We study the problem of list-decodable Gaussian covariance estimation. Given a multiset $T$ of $n$ points in $\mathbb R^d$ such that an unknown $\alpha<1/2$ fraction of points in $T$ are i.i.d. samples from an unknown Gaussian $\mathcal{N}(\mu, \Sigma)$, the goal is to output a list of $O(1/\alpha)$ hypotheses at least one of which is close to $\Sigma$ in relative Frobenius norm. Our main result is a $\mathrm{poly}(d,1/\alpha)$ sample and time algorithm for this task that guarantees relative Frobenius norm error of $\mathrm{poly}(1/\alpha)$. Importantly, our algorithm relies purely on spectral techniques. As a corollary, we obtain an efficient spectral algorithm for robust partial clustering of Gaussian mixture models (GMMs) -- a key ingredient in the recent work of [BDJ+22] on robustly learning arbitrary GMMs. Combined with the other components of [BDJ+22], our new method yields the first Sum-of-Squares-free algorithm for robustly learning GMMs. At the technical level, we develop a novel multi-filtering method for list-decodable covariance estimation that may be useful in other settings.

The decreasing cost and improved sensor and monitoring system technology (e.g. fiber optics and strain gauges) have led to more measurements in close proximity to each other. When using such spatially dense measurement data in Bayesian system identification strategies, the correlation in the model prediction error can become significant. The widely adopted assumption of uncorrelated Gaussian error may lead to inaccurate parameter estimation and overconfident predictions, which may lead to sub-optimal decisions. This paper addresses the challenges of performing Bayesian system identification for structures when large datasets are used, considering both spatial and temporal dependencies in the model uncertainty. We present an approach to efficiently evaluate the log-likelihood function, and we utilize nested sampling to compute the evidence for Bayesian model selection. The approach is first demonstrated on a synthetic case and then applied to a (measured) real-world steel bridge. The results show that the assumption of dependence in the model prediction uncertainties is decisively supported by the data. The proposed developments enable the use of large datasets and accounting for the dependency when performing Bayesian system identification, even when a relatively large number of uncertain parameters is inferred.

We propose a Bayesian approach to estimate finite population means for small areas. The proposed methodology improves on the traditional sample survey methods because, unlike the traditional methods, our proposed method borrows strength from multiple data sources. Our approach is fundamentally different from the existing small area Bayesian approach to the finite population sampling, which typically assumes a hierarchical model for all units of the finite population. We assume such model only for the units of the finite population in which the outcome variable is observed; because for these units, the assumed model can be checked using existing statistical tools. Modeling unobserved units of the finite population is challenging because the assumed model cannot be checked in the absence of data on the outcome variable. To make reasonable modeling assumptions, we propose to form several cells for each small area using factors that potentially influence the outcome variable of interest. This strategy is expected to bring some degree of homogeneity within a given cell and also among cells from different small areas that are constructed with the same factor level combination. Instead of modeling true probabilities for unobserved individual units, we assume that population means of cells with the same combination of factor levels are identical across small areas and the population mean of true probabilities for a cell is identical to the mean of true values for the observed units in that cell. We apply our proposed methodology to a real-life COVID-19 survey, linking information from multiple disparate data sources to estimate vaccine-hesitancy rates (proportions) for 50 US states and Washington, D.C. (small areas). We also provide practical ways of model selection that can be applied to a wider class of models under similar setting but for a diverse range of scientific problems.

In this work, we use Deep Gaussian Processes (DGPs) as statistical surrogates for stochastic processes with complex distributions. Conventional inferential methods for DGP models can suffer from high computational complexity as they require large-scale operations with kernel matrices for training and inference. In this work, we propose an efficient scheme for accurate inference and efficient training based on a range of Gaussian Processes, called the Tensor Markov Gaussian Processes (TMGP). We construct an induced approximation of TMGP referred to as the hierarchical expansion. Next, we develop a deep TMGP (DTMGP) model as the composition of multiple hierarchical expansion of TMGPs. The proposed DTMGP model has the following properties: (1) the outputs of each activation function are deterministic while the weights are chosen independently from standard Gaussian distribution; (2) in training or prediction, only polylog(M) (out of M) activation functions have non-zero outputs, which significantly boosts the computational efficiency. Our numerical experiments on synthetic models and real datasets show the superior computational efficiency of DTMGP over existing DGP models.

Assessing causal effects in the presence of unmeasured confounding is a challenging problem. Although auxiliary variables, such as instrumental variables, are commonly used to identify causal effects, they are often unavailable in practice due to stringent and untestable conditions. To address this issue, previous researches have utilized linear structural equation models to show that the causal effect can be identifiable when noise variables of the treatment and outcome are both non-Gaussian. In this paper, we investigate the problem of identifying the causal effect using auxiliary covariates and non-Gaussianity from the treatment. Our key idea is to characterize the impact of unmeasured confounders using an observed covariate, assuming they are all Gaussian. The auxiliary covariate can be an invalid instrument or an invalid proxy variable. We demonstrate that the causal effect can be identified using this measured covariate, even when the only source of non-Gaussianity comes from the treatment. We then extend the identification results to the multi-treatment setting and provide sufficient conditions for identification. Based on our identification results, we propose a simple and efficient procedure for calculating causal effects and show the $\sqrt{n}$-consistency of the proposed estimator. Finally, we evaluate the performance of our estimator through simulation studies and an application.

Besov priors are nonparametric priors that model spatially inhomogeneous functions. They are routinely used in inverse problems and imaging, where they exhibit attractive sparsity-promoting and edge-preserving features. A recent line of work has initiated the study of their asymptotic frequentist convergence properties. In the present paper, we consider the theoretical recovery performance of the posterior distributions associated to Besov-Laplace priors in the density estimation model, under the assumption that the observations are generated by a possibly spatially inhomogeneous true density belonging to a Besov space. We improve on existing results and show that carefully tuned Besov-Laplace priors attain optimal posterior contraction rates. Furthermore, we show that hierarchical procedures involving a hyper-prior on the regularity parameter lead to adaptation to any smoothness level.

The algorithms used for the optimal management of an ambulance fleet require an accurate description of the spatio-temporal evolution of the emergency events. In the last years, several authors have proposed sophisticated statistical approaches to forecast ambulance dispatches, typically modelling the data as a point pattern occurring on a planar region. Nevertheless, ambulance interventions can be more appropriately modelled as a realisation of a point process occurring on a linear network. The constrained spatial domain raises specific challenges and unique methodological problems that cannot be ignored when developing a proper statistical approach. Hence, this paper proposes a spatio-temporal model to analyse ambulance dispatches focusing on the interventions that occurred in the road network of Milan (Italy) from 2015 to 2017. We adopt a non-separable first-order intensity function with spatial and temporal terms. The temporal dimension is estimated semi-parametrically using a Poisson regression model, while the spatial dimension is estimated non-parametrically using a network kernel function. A set of weights is included in the spatial term to capture space-time interactions, inducing non-separability in the intensity function. A series of tests show that our approach successfully models the ambulance interventions and captures the space-time patterns more accurately than planar or separable point process models.

In this paper we study the type IV Knorr Held space time models. Such models typically apply intrinsic Markov random fields and constraints are imposed for identifiability. INLA is an efficient inference tool for such models where constraints are dealt with through a conditioning by kriging approach. When the number of spatial and/or temporal time points become large, it becomes computationally expensive to fit such models, partly due to the number of constraints involved. We propose a new approach, HyMiK, dividing constraints into two separate sets where one part is treated through a mixed effect approach while the other one is approached by the standard conditioning by kriging method, resulting in a more efficient procedure for dealing with constraints. The new approach is easy to apply based on existing implementations of INLA. We run the model on simulated data, on a real data set containing dengue fever cases in Brazil and another real data set of confirmed positive test cases of Covid-19 in the counties of Norway. For all cases we get very similar results when comparing the new approach with the tradition one while at the same time obtaining a significant increase in computational speed, varying on a factor from 2 to 4, depending on the sizes of the data sets.

We introduce a new computational framework for estimating parameters in generalized generalized linear models (GGLM), a class of models that extends the popular generalized linear models (GLM) to account for dependencies among observations in spatio-temporal data. The proposed approach uses a monotone operator-based variational inequality method to overcome non-convexity in parameter estimation and provide guarantees for parameter recovery. The results can be applied to GLM and GGLM, focusing on spatio-temporal models. We also present online instance-based bounds using martingale concentrations inequalities. Finally, we demonstrate the performance of the algorithm using numerical simulations and a real data example for wildfire incidents.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

北京阿比特科技有限公司