亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) face several challenges, including the tendency to produce incorrect outputs, known as hallucination. An effective solution is verifiable text generation, which prompts LLMs to generate content with citations for accuracy verification. However, verifiable text generation is non-trivial due to the focus-shifting phenomenon, the dilemma between the precision and scope in document retrieval, and the intricate reasoning required to discern the relationship between the claim and citations. In this paper, we present VTG, an innovative approach for Verifiable Text Generation with evolving memory and self-reflection. VTG maintains evolving long short-term memory to retain both valuable documents and up-to-date documents. Active retrieval and diverse query generation are utilized to enhance both the precision and scope of the retrieved documents. Furthermore, VTG features a two-tier verifier and an evidence finder, enabling rethinking and reflection on the relationship between the claim and citations. We conduct extensive experiments on five datasets across three knowledge-intensive tasks and the results reveal that VTG significantly outperforms existing baselines.

相關內容

Collaborative Filtering (CF) recommender models highly depend on user-item interactions to learn CF representations, thus falling short of recommending cold-start items. To address this issue, prior studies mainly introduce item features (e.g., thumbnails) for cold-start item recommendation. They learn a feature extractor on warm-start items to align feature representations with interactions, and then leverage the feature extractor to extract the feature representations of cold-start items for interaction prediction. Unfortunately, the features of cold-start items, especially the popular ones, tend to diverge from those of warm-start ones due to temporal feature shifts, preventing the feature extractor from accurately learning feature representations of cold-start items. To alleviate the impact of temporal feature shifts, we consider using Distributionally Robust Optimization (DRO) to enhance the generation ability of the feature extractor. Nonetheless, existing DRO methods face an inconsistency issue: the worse-case warm-start items emphasized during DRO training might not align well with the cold-start item distribution. To capture the temporal feature shifts and combat this inconsistency issue, we propose a novel temporal DRO with new optimization objectives, namely, 1) to integrate a worst-case factor to improve the worst-case performance, and 2) to devise a shifting factor to capture the shifting trend of item features and enhance the optimization of the potentially popular groups in cold-start items. Substantial experiments on three real-world datasets validate the superiority of our temporal DRO in enhancing the generalization ability of cold-start recommender models. The code is available at //github.com/Linxyhaha/TDRO/.

In patent prosecution, timely and effective responses to Office Actions (OAs) are crucial for acquiring patents, yet past automation and AI research have scarcely addressed this aspect. To address this gap, our study introduces the Patent Office Action Response Intelligence System (PARIS) and its advanced version, the Large Language Model Enhanced PARIS (LE-PARIS). These systems are designed to expedite the efficiency of patent attorneys in collaboratively handling OA responses. The systems' key features include the construction of an OA Topics Database, development of Response Templates, and implementation of Recommender Systems and LLM-based Response Generation. Our validation involves a multi-paradigmatic analysis using the USPTO Office Action database and longitudinal data of attorney interactions with our systems over six years. Through five studies, we examine the constructiveness of OA topics (studies 1 and 2) using topic modeling and the proposed Delphi process, the efficacy of our proposed hybrid recommender system tailored for OA (both LLM-based and non-LLM-based) (study 3), the quality of response generation (study 4), and the practical value of the systems in real-world scenarios via user studies (study 5). Results demonstrate that both PARIS and LE-PARIS significantly meet key metrics and positively impact attorney performance.

Large Language Models (LLMs) perform well on basic programming problems. However, they encounter challenges when dealing with complex tasks involving the use of diverse algorithmic and data structure skills, particularly programming competition-level problems. Notably, ChatGPT exhibits proficient performance on problems it has encountered during its pre-training phase, but this performance deteriorates when faced with novel problems. Consequently, enhancing the ability of LLMs to address unfamiliar problems has emerged as a pivotal research focus. The problem-solving process of LLMs mirrors human programmers' approach to a certain extent. When confronted with new programming tasks, human programmers engage in task planning and code writing with the previously acquired knowledge about algorithms and data structures. Despite having learned such knowledge, LLMs struggle to effectively apply it when faced with specific new problems. To address this issue, we constructed a novel dataset, CodeF, which contains a portion of programming problems that ChatGPT has not previously encountered. Furthermore, we developed a Knowledge Library tailored for Python programming contest problems and introduced the concept of Knowledge-Aware Code Generation (KareCoder). KareCoder bolsters the models' understanding and problem-solving capabilities by integrating prompt and knowledge from the library into the LLMs' code generation reasoning process, especially on Pass@1 metrics. Upon testing on the CodeF and APPS datasets, KareCoder demonstrated outstanding performance in handling novel problems previously unencountered by LLMs. In contrast with the code directly generated by ChatGPT, KareCoder achieved a relative improvement of 23.3% on the Pass@1 metric on the CodeF post2021-9 dataset. Additionally, it performs well compared to other methods when dealing with problems that LLMs have previously encountered.

To achieve faithful reasoning that aligns with human expectations, large language models (LLMs) need to ground their reasoning to real-world knowledge (e.g., web facts, math and physical rules). Tools help LLMs access this external knowledge, but there remains challenges for fine-tuning LLM agents (e.g., Toolformer) to invoke tools in multi-step reasoning problems, where inter-connected tool calls require holistic and efficient tool usage planning. In this work, we propose a new method for LLMs to better leverage tools in multi-step reasoning. Our method, Chain-of-Abstraction (CoA), trains LLMs to first decode reasoning chains with abstract placeholders, and then call domain tools to reify each reasoning chain by filling in specific knowledge. This planning with abstract chains enables LLMs to learn more general reasoning strategies, which are robust to shifts of domain knowledge (e.g., math results) relevant to different reasoning questions. It also allows LLMs to perform decoding and calling of external tools in parallel, which avoids the inference delay caused by waiting for tool responses. In mathematical reasoning and Wiki QA domains, we show that our method consistently outperforms previous chain-of-thought and tool-augmented baselines on both in-distribution and out-of-distribution test sets, with an average ~6% absolute QA accuracy improvement. LLM agents trained with our method also show more efficient tool use, with inference speed being on average ~1.4x faster than baseline tool-augmented LLMs.

Large language models (LLMs) are becoming increasingly important for machine learning applications. However, it can be challenging to align LLMs with our intent, particularly when we want to generate content that is preferable over others or when we want the LLM to respond in a certain style or tone that is hard to describe. To address this challenge, we propose an approach that uses contrastive examples to better describe our intent. This involves providing positive examples that illustrate the true intent, along with negative examples that show what characteristics we want LLMs to avoid. The negative examples can be retrieved from labeled data, written by a human, or generated by the LLM itself. Before generating an answer, we ask the model to analyze the examples to teach itself what to avoid. This reasoning step provides the model with the appropriate articulation of the user's need and guides it towards generting a better answer. We tested our approach on both synthesized and real-world datasets, including StackExchange and Reddit, and found that it significantly improves performance compared to standard few-shot prompting

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司