亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Although there is extensive literature on the application of artificial neural networks (NNs) in quality control (QC), to monitor the conformity of a process to quality specifications, at least five QC measurements are required, increasing the related cost. To explore the application of neural networks to samples of QC measurements of very small size, four one-dimensional (1-D) convolutional neural networks (CNNs) were designed, trained, and tested with datasets of $ n $-tuples of simulated standardized normally distributed QC measurements, for $ 1 \leq n \leq 4$. The designed neural networks were compared to statistical QC functions with equal probabilities for false rejection, applied to samples of the same size. When the $ n $-tuples included at least two QC measurements distributed as $ \mathcal{N}(\mu, \sigma^2) $, where $ 0.2 < |\mu| \leq 6.0 $, and $ 1.0 < \sigma \leq 7.0 $, the designed neural networks outperformed the respective statistical QC functions. Therefore, 1-D CNNs applied to samples of 2-4 quality control measurements can be used to increase the probability of detection of the nonconformity of a process to the quality specifications, with lower cost.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

There is a paucity of guidelines relating to displays in digital pathology making procurement decisions, and display configuration challenging. Experience suggests pathologists have personal preferences for brightness when using a microscope which we hypothesised could be used as a predictor for display setup. We conducted an online survey across 6 NHS hospitals to capture brightness adjustment habits on both microscopes and screens. A subsample of respondents took part in a practical task to determine microscope brightness and display luminance preferences. The survey indicates 81% of respondents adjust the brightness on their microscope, compared with 11% adjusting their digital display. Display adjustments are more likely for visual comfort and ambient light compensation rather than for tissue factors, common for microscope adjustments. Twenty consultants took part in the practical brightness assessment. Light preferences on the microscope showed no correlation with screen preferences, except where a pathologist has a markedly brighter microscope preference. All of the preferences in this cohort were for a display luminance of less than 500cd/m$^2$, with 90% preferring 350cd/m$^2$ or less. There was no correlation between these preferences and the ambient lighting in the room. We conclude that microscope preferences can only be used to predict screen luminance requirements where the microscope is being used at very high brightness levels. A display capable of a brightness of 500cd/m$^2$ should be suitable for almost all pathologists with 300cd/m$^2$ suitable for the majority. The ability to adjust display luminance was felt to be important by the majority of respondents. Further work needs to be undertaken to establish the relationship between diagnostic performance, preferences and ambient lighting levels.

The Horvitz-Thompson (H-T) estimator is widely used for estimating various types of average treatment effects under network interference. We systematically investigate the optimality properties of H-T estimator under network interference, by embedding it in the class of all linear estimators. In particular, we show that in presence of any kind of network interference, H-T estimator is in-admissible in the class of all linear estimators when using a completely randomized and a Bernoulli design. We also show that the H-T estimator becomes admissible under certain restricted randomization schemes termed as ``fixed exposure designs''. We give examples of such fixed exposure designs. It is well known that the H-T estimator is unbiased when correct weights are specified. Here, we derive the weights for unbiased estimation of various causal effects, and illustrate how they depend not only on the design, but more importantly, on the assumed form of interference (which in many real world situations is unknown at design stage), and the causal effect of interest.

Due to their intrinsic capabilities on parallel signal processing, optical neural networks (ONNs) have attracted extensive interests recently as a potential alternative to electronic artificial neural networks (ANNs) with reduced power consumption and low latency. Preliminary confirmation of the parallelism in optical computing has been widely done by applying the technology of wavelength division multiplexing (WDM) in the linear transformation part of neural networks. However, inter-channel crosstalk has obstructed WDM technologies to be deployed in nonlinear activation in ONNs. Here, we propose a universal WDM structure called multiplexed neuron sets (MNS) which apply WDM technologies to optical neurons and enable ONNs to be further compressed. A corresponding back-propagation (BP) training algorithm is proposed to alleviate or even cancel the influence of inter-channel crosstalk on MNS-based WDM-ONNs. For simplicity, semiconductor optical amplifiers (SOAs) are employed as an example of MNS to construct a WDM-ONN trained with the new algorithm. The result shows that the combination of MNS and the corresponding BP training algorithm significantly downsize the system and improve the energy efficiency to tens of times while giving similar performance to traditional ONNs.

While many studies have previously conducted direct comparisons between results obtained from frequentist and Bayesian models, our research introduces a novel perspective by examining these models in the context of a small dataset comprising phonetic data. Specifically, we employed mixed-effects models and Bayesian regression models to explore differences between monolingual and bilingual populations in the acoustic values of produced vowels. Our findings revealed that Bayesian hypothesis testing exhibited superior accuracy in identifying evidence for differences compared to the posthoc test, which tended to underestimate the existence of such differences. These results align with a substantial body of previous research highlighting the advantages of Bayesian over frequentist models, thereby emphasizing the need for methodological reform. In conclusion, our study supports the assertion that Bayesian models are more suitable for investigating differences in small datasets of phonetic and/or linguistic data, suggesting that researchers in these fields may find greater reliability in utilizing such models for their analyses.

Inspired by the success of WaveNet in multi-subject speech synthesis, we propose a novel neural network based on causal convolutions for multi-subject motion modeling and generation. The network can capture the intrinsic characteristics of the motion of different subjects, such as the influence of skeleton scale variation on motion style. Moreover, after fine-tuning the network using a small motion dataset for a novel skeleton that is not included in the training dataset, it is able to synthesize high-quality motions with a personalized style for the novel skeleton. The experimental results demonstrate that our network can model the intrinsic characteristics of motions well and can be applied to various motion modeling and synthesis tasks.

Agricultural robotics and automation are facing some challenges rooted in the high variability 9 of products, task complexity, crop quality requirement, and dense vegetation. Such a set of 10 challenges demands a more versatile and safe robotic system. Soft robotics is a young yet 11 promising field of research aimed to enhance these aspects of current rigid robots which 12 makes it a good candidate solution for that challenge. In general, it aimed to provide robots 13 and machines with adaptive locomotion (Ansari et al., 2015), safe and adaptive manipulation 14 (Arleo et al., 2020) and versatile grasping (Langowski et al., 2020). But in agriculture, soft 15 robots have been mainly used in harvesting tasks and more specifically in grasping. In this 16 chapter, we review a candidate group of soft grippers that were used for handling and 17 harvesting crops regarding agricultural challenges i.e. safety in handling and adaptability to 18 the high variation of crops. The review is aimed to show why and to what extent soft grippers 19 have been successful in handling agricultural tasks. The analysis carried out on the results 20 provides future directions for the systematic design of soft robots in agricultural tasks.

Creating a design from modular components necessitates three steps: Acquiring knowledge about available components, conceiving an abstract design concept, and implementing that concept in a concrete design. The third step entails many repetitive and menial tasks, such as inserting parts and creating joints between them. Especially when comparing and implementing design alternatives, this issue is compounded. We propose a use-case agnostic knowledge-driven framework to automate the implementation step. In particular, the framework catalogues the acquired knowledge and the design concept, as well as utilizes Combinatory Logic Synthesis to synthesize concrete design alternatives. This minimizes the effort required to create designs, allowing the design space to be thoroughly explored. We implemented the framework as a plugin for the CAD software Autodesk Fusion 360. We conducted a case study in which robotic arms were synthesized from a set of 28 modular components. Based on the case study, the applicability of the framework is analyzed and discussed.

The Gearhart-Koshy acceleration for the Kaczmarz method for linear systems is a line-search with the unusual property that it does not minimize the residual, but the error. Recently one of the authors generalized the this acceleration from a line-search to a search in affine subspaces. In this paper, we demonstrate that the affine search is a Krylov space method that is neither a CG-type nor a MINRES-type method, and we prove that it is mathematically equivalent with a more canonical Gram-Schmidt-based method. We also investigate what abstract property of the Kaczmarz method enables this type of algorithm, and we conclude with a simple numerical example.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language

北京阿比特科技有限公司