Robust partially observable Markov decision processes (robust POMDPs) extend classical POMDPs to handle additional uncertainty on the transition and observation probabilities via so-called uncertainty sets. Policies for robust POMDPs must not only be memory-based to account for partial observability but also robust against model uncertainty to account for the worst-case instances from the uncertainty sets. We propose the pessimistic iterative planning (PIP) framework, which finds robust memory-based policies for robust POMDPs. PIP alternates between two main steps: (1) selecting an adversarial (non-robust) POMDP via worst-case probability instances from the uncertainty sets; and (2) computing a finite-state controller (FSC) for this adversarial POMDP. We evaluate the performance of this FSC on the original robust POMDP and use this evaluation in step (1) to select the next adversarial POMDP. Within PIP, we propose the rFSCNet algorithm. In each iteration, rFSCNet finds an FSC through a recurrent neural network trained using supervision policies optimized for the adversarial POMDP. The empirical evaluation in four benchmark environments showcases improved robustness against a baseline method in an ablation study and competitive performance compared to a state-of-the-art robust POMDP solver.
Correctness of results from mixed-integer linear programming (MILP) solvers is critical, particularly in the context of applications such as hardware verification, compiler optimization, or machine-assisted theorem proving. To this end, VIPR 1.0 is the first recently proposed general certificate format for answers produced by MILP solvers. We design a schema to encode VIPR's inference rules as a ground formula that completely characterizes the validity of the algorithmic check, removing any ambiguities and imprecisions present in the specification. We implement a checker for VIPR certificates by expressing our ground formula with the Satisfiability Modulo Theory Library (SMT-LIB) and check its validity. Our approach is solver-agnostic, and we test its viability using benchmark instances found in the literature.
We introduce a novel Bayesian approach for variable selection using Gaussian process regression, which is crucial for enhancing interpretability and model regularization. Our method employs nearest neighbor Gaussian processes, serving as scalable approximations of classical Gaussian processes. Variable selection is achieved by conditioning the process mean and covariance function on a random set that represents the indices of contributing variables. A priori beliefs regarding this set control the variable selection, while reference priors are assigned to the remaining model parameters, ensuring numerical robustness in the process covariance matrix. We propose a Metropolis-Within-Gibbs algorithm for model inference. Evaluation using simulated data, a computer experiment approximation, and two real-world data sets demonstrate the effectiveness of our approach.
Large language models (LLMs) power a new generation of interactive AI applications exemplified by ChatGPT. The interactive nature of these applications demands low latency for LLM inference. Existing LLM serving systems use run-to-completion processing for inference jobs, which suffers from head-of-line blocking and long latency. We present FastServe, a distributed inference serving system for LLMs. FastServe exploits the autoregressive pattern of LLM inference to enable preemption at the granularity of each output token. FastServe uses preemptive scheduling to minimize latency with a novel skip-join Multi-Level Feedback Queue scheduler. Based on the new semi-information-agnostic setting of LLM inference, the scheduler leverages the input length information to assign an appropriate initial queue for each arrival job to join. The higher priority queues than the joined queue are skipped to reduce demotions. We design an efficient GPU memory management mechanism that proactively offloads and uploads intermediate state between GPU memory and host memory for LLM inference. We build a system prototype of FastServe and experimental results show that compared to the state-of-the-art solution vLLM, FastServe improves the throughput by up to 31.4x and 17.9x under the same average and tail latency requirements, respectively.
We introduce a dynamic approach to probabilistic forecast reconciliation at scale. Our model differs from the existing literature in this area in several important ways. Firstly we explicitly allow the weights allocated to the base forecasts in forming the combined, reconciled forecasts to vary over time. Secondly we drop the assumption, near ubiquitous in the literature, that in-sample base forecasts are appropriate for determining these weights, and use out of sample forecasts instead. Most existing probabilistic reconciliation approaches rely on time consuming sampling based techniques, and therefore do not scale well (or at all) to large data sets. We address this problem in two main ways, firstly by utilising a closed from estimator of covariance structure appropriate to hierarchical forecasting problems, and secondly by decomposing large hierarchies in to components which can be reconciled separately.
Neural Radiance Fields have achieved success in creating powerful 3D media representations with their exceptional reconstruction capabilities. However, the computational demands of volume rendering pose significant challenges during model training. Existing acceleration techniques often involve redesigning the model architecture, leading to limitations in compatibility across different frameworks. Furthermore, these methods tend to overlook the substantial memory costs incurred. In response to these challenges, we introduce an expansive supervision mechanism that efficiently balances computational load, rendering quality and flexibility for neural radiance field training. This mechanism operates by selectively rendering a small but crucial subset of pixels and expanding their values to estimate the error across the entire area for each iteration. Compare to conventional supervision, our method effectively bypasses redundant rendering processes, resulting in notable reductions in both time and memory consumption. Experimental results demonstrate that integrating expansive supervision within existing state-of-the-art acceleration frameworks can achieve 69% memory savings and 42% time savings, with negligible compromise in visual quality.
The discrete Laplacian operator holds a crucial role in 3D geometry processing, yet it is still challenging to define it on point clouds. Previous works mainly focused on constructing a local triangulation around each point to approximate the underlying manifold for defining the Laplacian operator, which may not be robust or accurate. In contrast, we simply use the K-nearest neighbors (KNN) graph constructed from the input point cloud and learn the Laplacian operator on the KNN graph with graph neural networks (GNNs). However, the ground-truth Laplacian operator is defined on a manifold mesh with a different connectivity from the KNN graph and thus cannot be directly used for training. To train the GNN, we propose a novel training scheme by imitating the behavior of the ground-truth Laplacian operator on a set of probe functions so that the learned Laplacian operator behaves similarly to the ground-truth Laplacian operator. We train our network on a subset of ShapeNet and evaluate it across a variety of point clouds. Compared with previous methods, our method reduces the error by an order of magnitude and excels in handling sparse point clouds with thin structures or sharp features. Our method also demonstrates a strong generalization ability to unseen shapes. With our learned Laplacian operator, we further apply a series of Laplacian-based geometry processing algorithms directly to point clouds and achieve accurate results, enabling many exciting possibilities for geometry processing on point clouds. The code and trained models are available at //github.com/IntelligentGeometry/NeLo.
Autonomous driving algorithms usually employ sRGB images as model input due to their compatibility with the human visual system. However, visually pleasing sRGB images are possibly sub-optimal for downstream tasks when compared to RAW images. The availability of RAW images is constrained by the difficulties in collecting real-world driving data and the associated challenges of annotation. To address this limitation and support research in RAW-domain driving perception, we design a novel and ultra-lightweight RAW reconstruction method. The proposed model introduces a learnable color correction matrix (CCM), which uses only a single convolutional layer to approximate the complex inverse image signal processor (ISP). Experimental results demonstrate that simulated RAW (simRAW) images generated by our method provide performance improvements equivalent to those produced by more complex inverse ISP methods when pretraining RAW-domain object detectors, which highlights the effectiveness and practicality of our approach.
Generative Bayesian Computation (GBC) methods are developed to provide an efficient computational solution for maximum expected utility (MEU). We propose a density-free generative method based on quantiles that naturally calculates expected utility as a marginal of quantiles. Our approach uses a deep quantile neural estimator to directly estimate distributional utilities. Generative methods assume only the ability to simulate from the model and parameters and as such are likelihood-free. A large training dataset is generated from parameters and output together with a base distribution. Our method a number of computational advantages primarily being density-free with an efficient estimator of expected utility. A link with the dual theory of expected utility and risk taking is also discussed. To illustrate our methodology, we solve an optimal portfolio allocation problem with Bayesian learning and a power utility (a.k.a. fractional Kelly criterion). Finally, we conclude with directions for future research.
With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.