亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a dynamic approach to probabilistic forecast reconciliation at scale. Our model differs from the existing literature in this area in several important ways. Firstly we explicitly allow the weights allocated to the base forecasts in forming the combined, reconciled forecasts to vary over time. Secondly we drop the assumption, near ubiquitous in the literature, that in-sample base forecasts are appropriate for determining these weights, and use out of sample forecasts instead. Most existing probabilistic reconciliation approaches rely on time consuming sampling based techniques, and therefore do not scale well (or at all) to large data sets. We address this problem in two main ways, firstly by utilising a closed from estimator of covariance structure appropriate to hierarchical forecasting problems, and secondly by decomposing large hierarchies in to components which can be reconciled separately.

相關內容

The instrumental variable method is a prominent approach to recover under certain conditions, valid inference about a treatment causal effect even when unmeasured confounding might be present. In a groundbreaking paper, Imbens and Angrist (1994) established that a valid instrument nonparametrically identifies the average causal effect among compliers, also known as the local average treatment effect under a certain monotonicity assumption which rules out the existence of so-called defiers. An often-cited attractive property of monotonicity is that it facilitates a causal interpretation of the instrumental variable estimand without restricting the degree of heterogeneity of the treatment causal effect. In this paper, we introduce an alternative equally straightforward and interpretable condition for identification, which accommodates both the presence of defiers and heterogenous treatment effects. Mainly, we show that under our new conditions, the instrumental variable estimand recovers the average causal effect for the subgroup of units for whom the treatment is manipulable by the instrument, a subgroup which may consist of both defiers and compliers, therefore recovering an effect estimand we aptly call the Nudge Average Treatment Effect.

This paper studies the construction of adaptive confidence intervals under Huber's contamination model when the contamination proportion is unknown. For the robust confidence interval of a Gaussian mean, we show that the optimal length of an adaptive interval must be exponentially wider than that of a non-adaptive one. An optimal construction is achieved through simultaneous uncertainty quantification of quantiles at all levels. The results are further extended beyond the Gaussian location model by addressing a general family of robust hypothesis testing. In contrast to adaptive robust estimation, our findings reveal that the optimal length of an adaptive robust confidence interval critically depends on the distribution's shape.

Sufficiently capable models could subvert human oversight and decision-making in important contexts. For example, in the context of AI development, models could covertly sabotage efforts to evaluate their own dangerous capabilities, to monitor their behavior, or to make decisions about their deployment. We refer to this family of abilities as sabotage capabilities. We develop a set of related threat models and evaluations. These evaluations are designed to provide evidence that a given model, operating under a given set of mitigations, could not successfully sabotage a frontier model developer or other large organization's activities in any of these ways. We demonstrate these evaluations on Anthropic's Claude 3 Opus and Claude 3.5 Sonnet models. Our results suggest that for these models, minimal mitigations are currently sufficient to address sabotage risks, but that more realistic evaluations and stronger mitigations seem likely to be necessary soon as capabilities improve. We also survey related evaluations we tried and abandoned. Finally, we discuss the advantages of mitigation-aware capability evaluations, and of simulating large-scale deployments using small-scale statistics.

This document provides the annotation guidelines for MaiBaam, a Bavarian corpus manually annotated with part-of-speech (POS) tags, syntactic dependencies, and German lemmas. MaiBaam belongs to the Universal Dependencies (UD) project, and our annotations elaborate on the general and German UD version 2 guidelines. In this document, we detail how to preprocess and tokenize Bavarian data, provide an overview of the POS tags and dependencies we use, explain annotation decisions that would also apply to closely related languages like German, and lastly we introduce and motivate decisions that are specific to Bavarian grammar.

This paper introduces a volume-conserving interface tracking algorithm on unstructured triangle meshes. We propose to discretize the interface via triangle edge cuts which represent the intersections between the interface and the triangle mesh edges using a compact 6 numbers per triangle. This enables an efficient implicit representation of the sub-triangle polygonal material regions without explicitly storing connectivity information. Moreover, we propose an efficient advection algorithm for this interface representation that is based on geometric queries and does not require an optimization process. This advection algorithm is extended via an area correction step that enforces volume-conservation of the materials. We demonstrate the efficacy of our method on a variety of advection problems on a triangle mesh and compare its performance to existing interface tracking methods including VOF and MOF.

We present novel reductions from sample compression schemes in multiclass classification, regression, and adversarially robust learning settings to binary sample compression schemes. Assuming we have a compression scheme for binary classes of size $f(d_\mathrm{VC})$, where $d_\mathrm{VC}$ is the VC dimension, then we have the following results: (1) If the binary compression scheme is a majority-vote or a stable compression scheme, then there exists a multiclass compression scheme of size $O(f(d_\mathrm{G}))$, where $d_\mathrm{G}$ is the graph dimension. Moreover, for general binary compression schemes, we obtain a compression of size $O(f(d_\mathrm{G})\log|Y|)$, where $Y$ is the label space. (2) If the binary compression scheme is a majority-vote or a stable compression scheme, then there exists an $\epsilon$-approximate compression scheme for regression over $[0,1]$-valued functions of size $O(f(d_\mathrm{P}))$, where $d_\mathrm{P}$ is the pseudo-dimension. For general binary compression schemes, we obtain a compression of size $O(f(d_\mathrm{P})\log(1/\epsilon))$. These results would have significant implications if the sample compression conjecture, which posits that any binary concept class with a finite VC dimension admits a binary compression scheme of size $O(d_\mathrm{VC})$, is resolved (Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995; Warmuth, 2003). Our results would then extend the proof of the conjecture immediately to other settings. We establish similar results for adversarially robust learning and also provide an example of a concept class that is robustly learnable but has no bounded-size compression scheme, demonstrating that learnability is not equivalent to having a compression scheme independent of the sample size, unlike in binary classification, where compression of size $2^{O(d_\mathrm{VC})}$ is attainable (Moran and Yehudayoff, 2016).

Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.

Disentangled Representation Learning (DRL) aims to learn a model capable of identifying and disentangling the underlying factors hidden in the observable data in representation form. The process of separating underlying factors of variation into variables with semantic meaning benefits in learning explainable representations of data, which imitates the meaningful understanding process of humans when observing an object or relation. As a general learning strategy, DRL has demonstrated its power in improving the model explainability, controlability, robustness, as well as generalization capacity in a wide range of scenarios such as computer vision, natural language processing, data mining etc. In this article, we comprehensively review DRL from various aspects including motivations, definitions, methodologies, evaluations, applications and model designs. We discuss works on DRL based on two well-recognized definitions, i.e., Intuitive Definition and Group Theory Definition. We further categorize the methodologies for DRL into four groups, i.e., Traditional Statistical Approaches, Variational Auto-encoder Based Approaches, Generative Adversarial Networks Based Approaches, Hierarchical Approaches and Other Approaches. We also analyze principles to design different DRL models that may benefit different tasks in practical applications. Finally, we point out challenges in DRL as well as potential research directions deserving future investigations. We believe this work may provide insights for promoting the DRL research in the community.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

北京阿比特科技有限公司