Aspect Category Detection (ACD) aims to identify implicit and explicit aspects in a given review sentence. The state-of-the-art approaches for ACD use Deep Neural Networks (DNNs) to address the problem as a multi-label classification task. However, learning category-specific representations heavily rely on the amount of labeled examples, which may not readily available in real-world scenarios. In this paper, we propose a novel approach to tackle the ACD task by combining DNNs with Gradual Machine Learning (GML) in a supervised setting. we aim to leverage the strength of DNN in semantic relation modeling, which can facilitate effective knowledge transfer between labeled and unlabeled instances during the gradual inference of GML. To achieve this, we first analyze the learned latent space of the DNN to model the relations, i.e., similar or opposite, between instances. We then represent these relations as binary features in a factor graph to efficiently convey knowledge. Finally, we conduct a comparative study of our proposed solution on real benchmark datasets and demonstrate that the GML approach, in collaboration with DNNs for feature extraction, consistently outperforms pure DNN solutions.
We present an automatic text expansion system to generate English sentences, which performs automatic Natural Language Generation (NLG) by combining linguistic rules with statistical approaches. Here, "automatic" means that the system can generate coherent and correct sentences from a minimum set of words. From its inception, the design is modular and adaptable to other languages. This adaptability is one of its greatest advantages. For English, we have created the highly precise aLexiE lexicon with wide coverage, which represents a contribution on its own. We have evaluated the resulting NLG library in an Augmentative and Alternative Communication (AAC) proof of concept, both directly (by regenerating corpus sentences) and manually (from annotations) using a popular corpus in the NLG field. We performed a second analysis by comparing the quality of text expansion in English to Spanish, using an ad-hoc Spanish-English parallel corpus. The system might also be applied to other domains such as report and news generation.
3D Gaussian splatting (3DGS) has recently demonstrated impressive capabilities in real-time novel view synthesis and 3D reconstruction. However, 3DGS heavily depends on the accurate initialization derived from Structure-from-Motion (SfM) methods. When the quality of the initial point cloud deteriorates, such as in the presence of noise or when using randomly initialized point cloud, 3DGS often undergoes large performance drops. To address this limitation, we propose a novel optimization strategy dubbed RAIN-GS (Relaing Accurate Initialization Constraint for 3D Gaussian Splatting). Our approach is based on an in-depth analysis of the original 3DGS optimization scheme and the analysis of the SfM initialization in the frequency domain. Leveraging simple modifications based on our analyses, RAIN-GS successfully trains 3D Gaussians from sub-optimal point cloud (e.g., randomly initialized point cloud), effectively relaxing the need for accurate initialization. We demonstrate the efficacy of our strategy through quantitative and qualitative comparisons on multiple datasets, where RAIN-GS trained with random point cloud achieves performance on-par with or even better than 3DGS trained with accurate SfM point cloud. Our project page and code can be found at //ku-cvlab.github.io/RAIN-GS.
Personalized Federated Learning (PFL) is proposed to find the greatest personalized models for each client. To avoid the central failure and communication bottleneck in the server-based FL, we concentrate on the Decentralized Personalized Federated Learning (DPFL) that performs distributed model training in a Peer-to-Peer (P2P) manner. Most personalized works in DPFL are based on undirected and symmetric topologies, however, the data, computation and communication resources heterogeneity result in large variances in the personalized models, which lead the undirected aggregation to suboptimal personalized performance and unguaranteed convergence. To address these issues, we propose a directed collaboration DPFL framework by incorporating stochastic gradient push and partial model personalized, called \textbf{D}ecentralized \textbf{Fed}erated \textbf{P}artial \textbf{G}radient \textbf{P}ush (\textbf{DFedPGP}). It personalizes the linear classifier in the modern deep model to customize the local solution and learns a consensus representation in a fully decentralized manner. Clients only share gradients with a subset of neighbors based on the directed and asymmetric topologies, which guarantees flexible choices for resource efficiency and better convergence. Theoretically, we show that the proposed DFedPGP achieves a superior convergence rate of $\mathcal{O}(\frac{1}{\sqrt{T}})$ in the general non-convex setting, and prove the tighter connectivity among clients will speed up the convergence. The proposed method achieves state-of-the-art (SOTA) accuracy in both data and computation heterogeneity scenarios, demonstrating the efficiency of the directed collaboration and partial gradient push.
Large language models (LLMs) have achieved impressive linguistic capabilities. However, a key limitation persists in their lack of human-like memory faculties. LLMs exhibit constrained memory retention across sequential interactions, hindering complex reasoning. This paper explores the potential of applying cognitive psychology's working memory frameworks, to enhance LLM architecture. The limitations of traditional LLM memory designs are analyzed, including their isolation of distinct dialog episodes and lack of persistent memory links. To address this, an innovative model is proposed incorporating a centralized Working Memory Hub and Episodic Buffer access to retain memories across episodes. This architecture aims to provide greater continuity for nuanced contextual reasoning during intricate tasks and collaborative scenarios. While promising, further research is required into optimizing episodic memory encoding, storage, prioritization, retrieval, and security. Overall, this paper provides a strategic blueprint for developing LLM agents with more sophisticated, human-like memory capabilities, highlighting memory mechanisms as a vital frontier in artificial general intelligence.
Despite the impressive advancements of Large Language Models (LLMs) in generating text, they are often limited by the knowledge contained in the input and prone to producing inaccurate or hallucinated content. To tackle these issues, Retrieval-augmented Generation (RAG) is employed as an effective strategy to enhance the available knowledge base and anchor the responses in reality by pulling additional texts from external databases. In real-world applications, texts are often linked through entities within a graph, such as citations in academic papers or comments in social networks. This paper exploits these topological relationships to guide the retrieval process in RAG. Specifically, we explore two kinds of topological connections: proximity-based, focusing on closely connected nodes, and role-based, which looks at nodes sharing similar subgraph structures. Our empirical research confirms their relevance to text relationships, leading us to develop a Topology-aware Retrieval-augmented Generation framework. This framework includes a retrieval module that selects texts based on their topological relationships and an aggregation module that integrates these texts into prompts to stimulate LLMs for text generation. We have curated established text-attributed networks and conducted comprehensive experiments to validate the effectiveness of this framework, demonstrating its potential to enhance RAG with topological awareness.
Recent work shown the capability of Large Language Models (LLMs) to solve tasks related to Knowledge Graphs, such as Knowledge Graph Completion, even in Zero- or Few-Shot paradigms. However, they are known to hallucinate answers, or output results in a non-deterministic manner, thus leading to wrongly reasoned responses, even if they satisfy the user's demands. To highlight opportunities and challenges in knowledge graphs-related tasks, we experiment with two distinguished LLMs, namely Mixtral-8x7B-Instruct-v0.1, and gpt-3.5-turbo-0125, on Knowledge Graph Completion for static knowledge graphs, using prompts constructed following the TELeR taxonomy, in Zero- and One-Shot contexts, on a Task-Oriented Dialogue system use case. When evaluated using both strict and flexible metrics measurement manners, our results show that LLMs could be fit for such a task if prompts encapsulate sufficient information and relevant examples.
This paper presents a novel approach for signal reconstruction using Spiking Neural Networks (SNN) based on the principles of Cognitive Informatics and Cognitive Computing. The proposed SNN leverages the Discrete Fourier Transform (DFT) to represent and reconstruct arbitrary time series signals. By employing N spiking neurons, the SNN captures the frequency components of the input signal, with each neuron assigned a unique frequency. The relationship between the magnitude and phase of the spiking neurons and the DFT coefficients is explored, enabling the reconstruction of the original signal. Additionally, the paper discusses the encoding of impulse delays and the phase differences between adjacent frequency components. This research contributes to the field of signal processing and provides insights into the application of SNN for cognitive signal analysis and reconstruction.
State-of-the-art sequential reasoning in Large Language Models (LLMs) has expanded the capabilities of Copilots beyond conversational tasks to complex function calling, managing thousands of API calls. However, the tendency of compositional prompting to segment tasks into multiple steps, each requiring a round-trip to the GPT APIs, leads to increased system latency and costs. Although recent advancements in parallel function calling have improved tool execution per API call, they may necessitate more detailed in-context instructions and task breakdown at the prompt level, resulting in higher engineering and production costs. Inspired by the hardware design principles of multiply-add (MAD) operations, which fuse multiple arithmetic operations into a single task from the compiler's perspective, we propose LLM-Tool Compiler, which selectively fuses similar types of tool operations under a single function at runtime, presenting them as a unified task to the LLM. This selective fusion inherently enhances parallelization and efficiency. Benchmarked on a large-scale Copilot platform, LLM-Tool Compiler achieves up to four times more parallel calls than existing methods, reducing token costs and latency by up to 40% and 12%, respectively.
Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.