亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The imposing evolution of artificial intelligence systems and, specifically, of Large Language Models (LLM) makes it necessary to carry out assessments of their level of risk and the impact they may have in the area of privacy, personal data protection and at an ethical level, especially on the weakest and most vulnerable. This contribution addresses human oversight, ethical oversight, and privacy impact assessment.

相關內容

Random probabilities are a key component to many nonparametric methods in Statistics and Machine Learning. To quantify comparisons between different laws of random probabilities several works are starting to use the elegant Wasserstein over Wasserstein distance. In this paper we prove that the infinite dimensionality of the space of probabilities drastically deteriorates its sample complexity, which is slower than any polynomial rate in the sample size. We propose a new distance that preserves many desirable properties of the former while achieving a parametric rate of convergence. In particular, our distance 1) metrizes weak convergence; 2) can be estimated numerically through samples with low complexity; 3) can be bounded analytically from above and below. The main ingredient are integral probability metrics, which lead to the name hierarchical IPM.

The rapid advancements in Large Language Models (LLMs) have revolutionized natural language processing, with GPTs, customized versions of ChatGPT available on the GPT Store, emerging as a prominent technology for specific domains and tasks. To support academic research on GPTs, we introduce GPTZoo, a large-scale dataset comprising 730,420 GPT instances. Each instance includes rich metadata with 21 attributes describing its characteristics, as well as instructions, knowledge files, and third-party services utilized during its development. GPTZoo aims to provide researchers with a comprehensive and readily available resource to study the real-world applications, performance, and potential of GPTs. To facilitate efficient retrieval and analysis of GPTs, we also developed an automated command-line interface (CLI) that supports keyword-based searching of the dataset. To promote open research and innovation, the GPTZoo dataset will undergo continuous updates, and we are granting researchers public access to GPTZoo and its associated tools.

Classical work on metric space based committee selection problem interprets distance as ``near is better''. In this work, motivated by real-life situations, we interpret distance as ``far is better''. Formally stated, we initiate the study of ``obnoxious'' committee scoring rules when the voters' preferences are expressed via a metric space. To this end, we propose a model where large distances imply high satisfaction and study the egalitarian avatar of the well-known Chamberlin-Courant voting rule and some of its generalizations. For a given integer value $1 \le \lambda \le k$, the committee size k, a voter derives satisfaction from only the $\lambda$-th favorite committee member; the goal is to maximize the satisfaction of the least satisfied voter. For the special case of $\lambda = 1$, this yields the egalitarian Chamberlin-Courant rule. In this paper, we consider general metric space and the special case of a $d$-dimensional Euclidean space. We show that when $\lambda$ is $1$ and $k$, the problem is polynomial-time solvable in $\mathbb{R}^2$ and general metric space, respectively. However, for $\lambda = k-1$, it is NP-hard even in $\mathbb{R}^2$. Thus, we have ``double-dichotomy'' in $\mathbb{R}^2$ with respect to the value of {\lambda}, where the extreme cases are solvable in polynomial time but an intermediate case is NP-hard. Furthermore, this phenomenon appears to be ``tight'' for $\mathbb{R}^2$ because the problem is NP-hard for general metric space, even for $\lambda=1$. Consequently, we are motivated to explore the problem in the realm of (parameterized) approximation algorithms and obtain positive results. Interestingly, we note that this generalization of Chamberlin-Courant rules encodes practical constraints that are relevant to solutions for certain facility locations.

This research introduces a Positive Reconstruction Framework based on positive psychology theory. Overcoming negative thoughts can be challenging, our objective is to address and reframe them through a positive reinterpretation. To tackle this challenge, a two-fold approach is necessary: identifying cognitive distortions and suggesting a positively reframed alternative while preserving the original thought's meaning. Recent studies have investigated the application of Natural Language Processing (NLP) models in English for each stage of this process. In this study, we emphasize the theoretical foundation for the Positive Reconstruction Framework, grounded in broaden-and-build theory. We provide a shared corpus containing 4001 instances for detecting cognitive distortions and 1900 instances for positive reconstruction in Mandarin. Leveraging recent NLP techniques, including transfer learning, fine-tuning pretrained networks, and prompt engineering, we demonstrate the effectiveness of automated tools for both tasks. In summary, our study contributes to multilingual positive reconstruction, highlighting the effectiveness of NLP in cognitive distortion detection and positive reconstruction.

Compositionality has long been considered a key explanatory property underlying human intelligence: arbitrary concepts can be composed into novel complex combinations, permitting the acquisition of an open ended, potentially infinite expressive capacity from finite learning experiences. Influential arguments have held that neural networks fail to explain this aspect of behavior, leading many to dismiss them as viable models of human cognition. Over the last decade, however, modern deep neural networks (DNNs), which share the same fundamental design principles as their predecessors, have come to dominate artificial intelligence, exhibiting the most advanced cognitive behaviors ever demonstrated in machines. In particular, large language models (LLMs), DNNs trained to predict the next word on a large corpus of text, have proven capable of sophisticated behaviors such as writing syntactically complex sentences without grammatical errors, producing cogent chains of reasoning, and even writing original computer programs -- all behaviors thought to require compositional processing. In this chapter, we survey recent empirical work from machine learning for a broad audience in philosophy, cognitive science, and neuroscience, situating recent breakthroughs within the broader context of philosophical arguments about compositionality. In particular, our review emphasizes two approaches to endowing neural networks with compositional generalization capabilities: (1) architectural inductive biases, and (2) metalearning, or learning to learn. We also present findings suggesting that LLM pretraining can be understood as a kind of metalearning, and can thereby equip DNNs with compositional generalization abilities in a similar way. We conclude by discussing the implications that these findings may have for the study of compositionality in human cognition and by suggesting avenues for future research.

The integration of Large Language Models (LLMs) into various global cultures fundamentally presents a cultural challenge: LLMs must navigate interactions, respect social norms, and avoid transgressing cultural boundaries. However, it is still unclear if LLMs can adapt their outputs to diverse cultural norms. Our study focuses on this aspect. We introduce NormAd, a novel dataset, which includes 2.6k stories that represent social and cultural norms from 75 countries, to assess the ability of LLMs to adapt to different granular levels of socio-cultural contexts such as the country of origin, its associated cultural values, and prevalent social norms. Our study reveals that LLMs struggle with cultural reasoning across all contextual granularities, showing stronger adaptability to English-centric cultures over those from the Global South. Even with explicit social norms, the top-performing model, Mistral-7b-Instruct, achieves only 81.8\% accuracy, lagging behind the 95.6\% achieved by humans. Evaluation on NormAd further reveals that LLMs struggle to adapt to stories involving gift-giving across cultures. Due to inherent agreement or sycophancy biases, LLMs find it considerably easier to assess the social acceptability of stories that adhere to cultural norms than those that deviate from them. Our benchmark measures the cultural adaptability (or lack thereof) of LLMs, emphasizing the potential to make these technologies more equitable and useful for global audiences. We release the NormAd dataset and its associated code on GitHub.

Large Language Models (LLMs), such as the GPT-4 and LLaMA families, have demonstrated considerable success across diverse tasks, including multiple-choice questions (MCQs). However, these models exhibit a positional bias, particularly an even worse anchored bias in the GPT-2 family, where they consistently favour the first choice 'A' in MCQs during inference. This anchored bias challenges the integrity of GPT-2's decision-making process, as it skews performance based on the position rather than the content of the choices in MCQs. In this study, we utilise the mechanistic interpretability approach to identify the internal modules within GPT-2 models responsible for this bias. We focus on the Multi-Layer Perceptron (MLP) layers and attention heads, using the "logit lens" method to trace and modify the specific value vectors that contribute to the bias. By updating these vectors within MLP and recalibrating attention patterns to neutralise the preference for the first choice 'A', we effectively mitigate the anchored bias. Our interventions not only mitigate the bias but also improve the overall MCQ prediction accuracy for the GPT-2 family across various datasets. This work represents the first comprehensive mechanistic analysis of anchored bias in MCQs within the GPT-2 models, introducing targeted, minimal-intervention strategies that significantly enhance GPT2 model robustness and accuracy in MCQs. Our code is available at //github.com/ruizheliUOA/Anchored_Bias_GPT2.

In this paper, we propose R\'enyi information generating function (RIGF) and discuss its various properties. The relation between the RIGF and Shannon entropy of order $q>0$ is established. Several bounds are obtained. The RIGF of escort distribution is also derived. Furthermore, we introduce R\'enyi divergence information generating function (RDIGF) and discuss its effect under monotone transformations. Next, we propose Jensen-R\'enyi information generating function (JRIGF) and establish its properties. In addition, we present non-parametric and parametric estimators of the RIGF. For illustrative purpose, a simulation study is carried out and a real data relating to the failure times of electronic components is analyzed. Finally, a comparison study between the non-parametric and parametric estimators is made in terms of absolute bias and mean square error (MSE).

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司