Due to the high inter-class similarity caused by the complex composition and the co-existing objects across scenes, numerous studies have explored object semantic knowledge within scenes to improve scene recognition. However, a resulting challenge emerges as object information extraction techniques require heavy computational costs, thereby burdening the network considerably. This limitation often renders object-assisted approaches incompatible with edge devices in practical deployment. In contrast, this paper proposes a semantic knowledge-based similarity prototype, which can help the scene recognition network achieve superior accuracy without increasing the computational cost in practice. It is simple and can be plug-and-played into existing pipelines. More specifically, a statistical strategy is introduced to depict semantic knowledge in scenes as class-level semantic representations. These representations are used to explore correlations between scene classes, ultimately constructing a similarity prototype. Furthermore, we propose to leverage the similarity prototype to support network training from the perspective of Gradient Label Softening and Batch-level Contrastive Loss, respectively. Comprehensive evaluations on multiple benchmarks show that our similarity prototype enhances the performance of existing networks, all while avoiding any additional computational burden in practical deployments. Code and the statistical similarity prototype will be available soon.
Closure spaces, a generalisation of topological spaces, have shown to be a convenient theoretical framework for spatial model checking. The closure operator of closure spaces and quasi-discrete closure spaces induces a notion of neighborhood akin to that of topological spaces that build on open sets. For closure models and quasi-discrete closure models, in this paper we present three notions of bisimilarity that are logically characterised by corresponding modal logics with spatial modalities: (i) CM-bisimilarity for closure models (CMs) is shown to generalise Topo-bisimilarity for topological models. CM-bisimilarity corresponds to equivalence with respect to the infinitary modal logic IML that includes the modality ${\cal N}$ for ``being near''. (ii) CMC-bisimilarity, with `CMC' standing for CM-bisimilarity with converse, refines CM-bisimilarity for quasi-discrete closure spaces, carriers of quasi-discrete closure models. Quasi-discrete closure models come equipped with two closure operators, Direct ${\cal C}$ and Converse ${\cal C}$, stemming from the binary relation underlying closure and its converse. CMC-bisimilarity, is captured by the infinitary modal logic IMLC including two modalities, Direct ${\cal N}$ and Converse ${\cal N}$, corresponding to the two closure operators. (iii) CoPa-bisimilarity on quasi-discrete closure models, which is weaker than CMC-bisimilarity, is based on the notion of compatible paths. The logical counterpart of CoPa-bisimilarity is the infinitary modal logic ICRL with modalities Direct $\zeta$ and Converse $\zeta$, whose semantics relies on forward and backward paths, respectively. It is shown that CoPa-bisimilarity for quasi-discrete closure models relates to divergence-blind stuttering equivalence for Kripke structures.
Sequence prediction on temporal data requires the ability to understand compositional structures of multi-level semantics beyond individual and contextual properties. The task of temporal action segmentation, which aims at translating an untrimmed activity video into a sequence of action segments, remains challenging for this reason. This paper addresses the problem by introducing an effective activity grammar to guide neural predictions for temporal action segmentation. We propose a novel grammar induction algorithm that extracts a powerful context-free grammar from action sequence data. We also develop an efficient generalized parser that transforms frame-level probability distributions into a reliable sequence of actions according to the induced grammar with recursive rules. Our approach can be combined with any neural network for temporal action segmentation to enhance the sequence prediction and discover its compositional structure. Experimental results demonstrate that our method significantly improves temporal action segmentation in terms of both performance and interpretability on two standard benchmarks, Breakfast and 50 Salads.
Masked reconstruction serves as a fundamental pretext task for self-supervised learning, enabling the model to enhance its feature extraction capabilities by reconstructing the masked segments from extensive unlabeled data. In human activity recognition, this pretext task employed a masking strategy centered on the time dimension. However, this masking strategy fails to fully exploit the inherent characteristics of wearable sensor data and overlooks the inter-channel information coupling, thereby limiting its potential as a powerful pretext task. To address these limitations, we propose a novel masking strategy called Channel Masking. It involves masking the sensor data along the channel dimension, thereby compelling the encoder to extract channel-related features while performing the masked reconstruction task. Moreover, Channel Masking can be seamlessly integrated with masking strategies along the time dimension, thereby motivating the self-supervised model to undertake the masked reconstruction task in both the time and channel dimensions. Integrated masking strategies are named Time-Channel Masking and Span-Channel Masking. Finally, we optimize the reconstruction loss function to incorporate the reconstruction loss in both the time and channel dimensions. We evaluate proposed masking strategies on three public datasets, and experimental results show that the proposed strategies outperform prior strategies in both self-supervised and semi-supervised scenarios.
Expressive state-of-the-art separation logics rely on step-indexing to model semantically complex features and to support modular reasoning about imperative higher-order concurrent and distributed programs. Step-indexing comes, however, with an inherent cost: it restricts the adequacy theorem of program logics to a fairly simple class of safety properties. In this paper, we explore if and how intensional refinement is a viable methodology for strengthening higher-order concurrent (and distributed) separation logic to prove non-trivial safety and liveness properties. Specifically, we introduce Trillium, a language-agnostic separation logic framework for showing intensional refinement relations between traces of a program and a model. We instantiate Trillium with a concurrent language and develop Fairis, a concurrent separation logic, that we use to show liveness properties of concurrent programs under fair scheduling assumptions through a fair liveness-preserving refinement of a model. We also instantiate Trillium with a distributed language and obtain an extension of Aneris, a distributed separation logic, which we use to show refinement relations between distributed systems and TLA+ models.
The substantial computational costs of diffusion models, particularly due to the repeated denoising steps crucial for high-quality image generation, present a major obstacle to their widespread adoption. While several studies have attempted to address this issue by reducing the number of score function evaluations using advanced ODE solvers without fine-tuning, the decreased number of denoising iterations misses the opportunity to update fine details, resulting in noticeable quality degradation. In our work, we introduce an advanced acceleration technique that leverages the temporal redundancy inherent in diffusion models. Reusing feature maps with high temporal similarity opens up a new opportunity to save computation without sacrificing output quality. To realize the practical benefits of this intuition, we conduct an extensive analysis and propose a novel method, FRDiff. FRDiff is designed to harness the advantages of both reduced NFE and feature reuse, achieving a Pareto frontier that balances fidelity and latency trade-offs in various generative tasks.
Domain experts often possess valuable physical insights that are overlooked in fully automated decision-making processes such as Bayesian optimisation. In this article we apply high-throughput (batch) Bayesian optimisation alongside anthropological decision theory to enable domain experts to influence the selection of optimal experiments. Our methodology exploits the hypothesis that humans are better at making discrete choices than continuous ones and enables experts to influence critical early decisions. At each iteration we solve an augmented multi-objective optimisation problem across a number of alternate solutions, maximising both the sum of their utility function values and the determinant of their covariance matrix, equivalent to their total variability. By taking the solution at the knee point of the Pareto front, we return a set of alternate solutions at each iteration that have both high utility values and are reasonably distinct, from which the expert selects one for evaluation. We demonstrate that even in the case of an uninformed practitioner, our algorithm recovers the regret of standard Bayesian optimisation.
The substantial computational cost of high-fidelity models in numerical hemodynamics has, so far, relegated their use mainly to offline treatment planning. New breakthroughs in data-driven architectures and optimization techniques for fast surrogate modeling provide an exciting opportunity to overcome these limitations, enabling the use of such technology for time-critical decisions. We discuss an application to the repair of multiple stenosis in peripheral pulmonary artery disease through either transcatheter pulmonary artery rehabilitation or surgery, where it is of interest to achieve desired pressures and flows at specific locations in the pulmonary artery tree, while minimizing the risk for the patient. Since different degrees of success can be achieved in practice during treatment, we formulate the problem in probability, and solve it through a sample-based approach. We propose a new offline-online pipeline for probabilsitic real-time treatment planning which combines offline assimilation of boundary conditions, model reduction, and training dataset generation with online estimation of marginal probabilities, possibly conditioned on the degree of augmentation observed in already repaired lesions. Moreover, we propose a new approach for the parametrization of arbitrarily shaped vascular repairs through iterative corrections of a zero-dimensional approximant. We demonstrate this pipeline for a diseased model of the pulmonary artery tree available through the Vascular Model Repository.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.