亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a deterministic algorithm for solving a wide range of dynamic programming problems in trees in $O(\log D)$ rounds in the massively parallel computation model (MPC), with $O(n^\delta)$ words of local memory per machine, for any given constant $0 < \delta < 1$. Here $D$ is the diameter of the tree and $n$ is the number of nodes--we emphasize that our running time is independent of $n$. Our algorithm can solve many classical graph optimization problems such as maximum weight independent set, maximum weight matching, minimum weight dominating set, and minimum weight vertex cover. It can also be used to solve many accumulation tasks in which some aggregate information is propagated upwards or downwards in the tree--this includes, for example, computing the sum, minimum, or maximum of the input labels in each subtree, as well as many inference tasks commonly solved with belief propagation. Our algorithm can also solve any locally checkable labeling problem (LCLs) in trees. Our algorithm works for any reasonable representation of the input tree; for example, the tree can be represented as a list of edges or as a string with nested parentheses or tags. The running time of $O(\log D)$ rounds is also known to be necessary, assuming the widely-believed $2$-cycle conjecture. Our algorithm strictly improves on two prior algorithms: (i) Bateni, Behnezhad, Derakhshan, Hajiaghayi, and Mirrokni [ICALP'18] solve problems of these flavors in $O(\log n)$ rounds, while our algorithm is much faster in low-diameter trees. Furthermore, their algorithm also uses randomness, while our algorithm is deterministic. (ii) Balliu, Latypov, Maus, Olivetti, and Uitto [SODA'23] solve only locally checkable labeling problems in $O(\log D)$ rounds, while our algorithm can be applied to a much broader family of problems.

相關內容

A sequence of random variables is called exchangeable if its joint distribution is invariant under permutations. The original formulation of de Finetti's theorem says that any exchangeable sequence of $\{0,1\}$-valued random variables can be thought of as a mixture of independent and identically distributed sequences in a certain precise mathematical sense. Interpreting this statement from a convex analytic perspective, Hewitt and Savage obtained the same conclusion for more general state spaces under some topological conditions. The main contribution of this paper is in providing a new framework that explains the theorem purely as a consequence of the underlying distribution of the random variables, with no topological conditions (beyond Hausdorffness) on the state space being necessary if the distribution is Radon. We also show that it is consistent with the axioms of ZFC that de Finetti's theorem holds for all sequences of exchangeable random variables taking values in any complete metric space. The framework we use is based on nonstandard analysis. We have provided a self-contained introduction to nonstandard analysis as an appendix, thus rendering measure theoretic probability and point-set topology as the only prerequisites for this paper. Our introduction aims to develop some new ideologies that might be of interest to mathematicians, philosophers, and mathematics educators alike. Our technical tools come from nonstandard topological measure theory, in which a highlight is a new generalization of Prokhorov's theorem. Modulo such technical tools, our proof relies on properties of the empirical measures induced by hyperfinitely many identically distributed random variables -- a feature that allows us to establish de Finetti's theorem in the generality that we seek while still retaining the combinatorial intuition of proofs of simpler versions of de Finetti's theorem.

The Plackett--Luce model is a popular approach for ranking data analysis, where a utility vector is employed to determine the probability of each outcome based on Luce's choice axiom. In this paper, we investigate the asymptotic theory of utility vector estimation by maximizing different types of likelihood, such as the full-, marginal-, and quasi-likelihood. We provide a rank-matching interpretation for the estimating equations of these estimators and analyze their asymptotic behavior as the number of items being compared tends to infinity. In particular, we establish the uniform consistency of these estimators under conditions characterized by the topology of the underlying comparison graph sequence and demonstrate that the proposed conditions are sharp for common sampling scenarios such as the nonuniform random hypergraph model and the hypergraph stochastic block model; we also obtain the asymptotic normality of these estimators and discuss the trade-off between statistical efficiency and computational complexity for practical uncertainty quantification. Both results allow for nonuniform and inhomogeneous comparison graphs with varying edge sizes and different asymptotic orders of edge probabilities. We verify our theoretical findings by conducting detailed numerical experiments.

Extended Dynamic Mode Decomposition (EDMD) is a data-driven tool for forecasting and model reduction of dynamics, which has been extensively taken up in the physical sciences. While the method is conceptually simple, in deterministic chaos it is unclear what its properties are or even what it converges to. In particular, it is not clear how EDMD's least-squares approximation treats the classes of regular functions needed to make sense of chaotic dynamics. We develop for the first time a general, rigorous theory of EDMD on the simplest examples of chaotic maps: analytic expanding maps of the circle. To do this, we prove a new, basic approximation result in the theory of orthogonal polynomials on the unit circle (OPUC) and apply methods from transfer operator theory. We show that in the infinite-data limit, the least-squares projection error is exponentially small for trigonometric polynomial observable dictionaries. As a result, we show that the forecasts and Koopman spectral data produced using EDMD in this setting converge to the physically meaningful limits, exponentially fast with respect to the size of the dictionary. This demonstrates that with only a relatively small polynomial dictionary, EDMD can be very effective, even when the sampling measure is not uniform. Furthermore, our OPUC result suggests that data-based least-squares projections may be a very effective approximation strategy.

We establish globally optimal solutions to a class of fractional optimization problems on a class of constraint sets, whose key characteristics are as follows: 1) The numerator and the denominator of the objective function are both convex, semi-algebraic, Lipschitz continuous and differentiable with Lipschitz continuous gradients on the constraint set. 2) The constraint set is closed, convex and semi-algebraic. Compared with Dinkelbach's approach, our novelty falls into the following aspects: 1) Dinkelbach's has to solve a concave maximization problem in each iteration, which is nontrivial to obtain a solution, while ours only needs to conduct one proximity gradient operation in each iteration. 2) Dinkelbach's requires at least one nonnegative point for the numerator to proceed the algorithm, but ours does not, which is available to a much wider class of situations. 3) Dinkelbach's requires a closed and bounded constraint set, while ours only needs the closedness but not necessarily the boundedness. Therefore, our approach is viable for many more practical models, like optimizing the Sharpe ratio (SR) or the Information ratio in mathematical finance. Numerical experiments show that our approach achieves the ground-truth solutions in two simple examples. For real-world financial data, it outperforms several existing approaches for SR maximization.

Attack trees (ATs) are an important tool in security analysis, and an important part of AT analysis is computing metrics. However, metric computation is NP-complete in general. In this paper, we showcase the use of mixed integer linear programming (MILP) as a tool for quantitative analysis. Specifically, we use MILP to solve the open problem of calculating the min time metric of dynamic ATs, i.e., the minimal time to attack a system. We also present two other tools to further improve our MILP method: First, we show how the computation can be sped up by identifying the modules of an AT, i.e. subtrees connected to the rest of the AT via only one node. Second, we define a general semantics for dynamic ATs that significantly relaxes the restrictions on attack trees compared to earlier work, allowing us to apply our methods to a wide variety of ATs. Experiments on a synthetic testing set of large ATs verify that both the integer linear programming approach and modular analysis considerably decrease the computation time of attack time analysis.

The NSGA-II is one of the most prominent algorithms to solve multi-objective optimization problems. Despite numerous successful applications, several studies have shown that the NSGA-II is less effective for larger numbers of objectives. In this work, we use mathematical runtime analyses to rigorously demonstrate and quantify this phenomenon. We show that even on the simple $m$-objective generalization of the discrete OneMinMax benchmark, where every solution is Pareto optimal, the NSGA-II also with large population sizes cannot compute the full Pareto front (objective vectors of all Pareto optima) in sub-exponential time when the number of objectives is at least three. The reason for this unexpected behavior lies in the fact that in the computation of the crowding distance, the different objectives are regarded independently. This is not a problem for two objectives, where any sorting of a pair-wise incomparable set of solutions according to one objective is also such a sorting according to the other objective (in the inverse order).

The topology-aware Massively Parallel Computation (MPC) model is proposed and studied recently, which enhances the classical MPC model by the awareness of network topology. The work of Hu et al. on topology-aware MPC model considers only the tree topology. In this paper a more general case is considered, where the underlying network is a weighted complete graph. We then call this model as Weighted Massively Parallel Computation (WMPC) model, and study the problem of minimizing communication cost under it. Two communication cost minimization problems are defined based on different pattern of communication, which are the Data Redistribution Problem and Data Allocation Problem. We also define four kinds of objective functions for communication cost, which consider the total cost, bottleneck cost, maximum of send and receive cost, and summation of send and receive cost, respectively. Combining the two problems in different communication pattern with the four kinds of objective cost functions, 8 problems are obtained. The hardness results of the 8 problems make up the content of this paper. With rigorous proof, we prove that some of the 8 problems are in P, some FPT, some NP-complete, and some W[1]-complete.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.

Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.

北京阿比特科技有限公司