亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Understanding the location of ultra-wideband (UWB) tag-attached objects and people in the real world is vital to enabling a smooth cyber-physical transition. However, most UWB localization systems today require multiple anchors in the environment, which can be very cumbersome to set up. In this work, we develop XRLoc, providing an accuracy of a few centimeters in many real-world scenarios. This paper will delineate the key ideas which allow us to overcome the fundamental restrictions that plague a single anchor point from localization of a device to within an error of a few centimeters. We deploy a VR chess game using everyday objects as a demo and find that our system achieves $2.4$ cm median accuracy and $5.3$ cm $90^\mathrm{th}$ percentile accuracy in dynamic scenarios, performing at least $8\times$ better than state-of-art localization systems. Additionally, we implement a MAC protocol to furnish these locations for over $10$ tags at update rates of $100$ Hz, with a localization latency of $\sim 1$ ms.

相關內容

Understanding event descriptions is a central aspect of language processing, but current approaches focus overwhelmingly on single sentences or documents. Aggregating information about an event \emph{across documents} can offer a much richer understanding. To this end, we present FAMuS, a new corpus of Wikipedia passages that \emph{report} on some event, paired with underlying, genre-diverse (non-Wikipedia) \emph{source} articles for the same event. Events and (cross-sentence) arguments in both report and source are annotated against FrameNet, providing broad coverage of different event types. We present results on two key event understanding tasks enabled by FAMuS: \emph{source validation} -- determining whether a document is a valid source for a target report event -- and \emph{cross-document argument extraction} -- full-document argument extraction for a target event from both its report and the correct source article. We release both FAMuS and our models to support further research.

Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at //github.com/Spico197/Mirror .

Deontological ethics, specifically understood through Immanuel Kant, provides a moral framework that emphasizes the importance of duties and principles, rather than the consequences of action. Understanding that despite the prominence of deontology, it is currently an overlooked approach in fairness metrics, this paper explores the compatibility of a Kantian deontological framework in fairness metrics, part of the AI alignment field. We revisit Kant's critique of utilitarianism, which is the primary approach in AI fairness metrics and argue that fairness principles should align with the Kantian deontological framework. By integrating Kantian ethics into AI alignment, we not only bring in a widely-accepted prominent moral theory but also strive for a more morally grounded AI landscape that better balances outcomes and procedures in pursuit of fairness and justice.

Motion forecasting plays a crucial role in autonomous driving, with the aim of predicting the future reasonable motions of traffic agents. Most existing methods mainly model the historical interactions between agents and the environment, and predict multi-modal trajectories in a feedforward process, ignoring potential trajectory changes caused by future interactions between agents. In this paper, we propose a novel Future Feedback Interaction Network (FFINet) to aggregate features the current observations and potential future interactions for trajectory prediction. Firstly, we employ different spatial-temporal encoders to embed the decomposed position vectors and the current position of each scene, providing rich features for the subsequent cross-temporal aggregation. Secondly, the relative interaction and cross-temporal aggregation strategies are sequentially adopted to integrate features in the current fusion module, observation interaction module, future feedback module and global fusion module, in which the future feedback module can enable the understanding of pre-action by feeding the influence of preview information to feedforward prediction. Thirdly, the comprehensive interaction features are further fed into final predictor to generate the joint predicted trajectories of multiple agents. Extensive experimental results show that our FFINet achieves the state-of-the-art performance on Argoverse 1 and Argoverse 2 motion forecasting benchmarks.

Video description entails automatically generating coherent natural language sentences that narrate the content of a given video. We introduce CLearViD, a transformer-based model for video description generation that leverages curriculum learning to accomplish this task. In particular, we investigate two curriculum strategies: (1) progressively exposing the model to more challenging samples by gradually applying a Gaussian noise to the video data, and (2) gradually reducing the capacity of the network through dropout during the training process. These methods enable the model to learn more robust and generalizable features. Moreover, CLearViD leverages the Mish activation function, which provides non-linearity and non-monotonicity and helps alleviate the issue of vanishing gradients. Our extensive experiments and ablation studies demonstrate the effectiveness of the proposed model. The results on two datasets, namely ActivityNet Captions and YouCook2, show that CLearViD significantly outperforms existing state-of-the-art models in terms of both accuracy and diversity metrics.

Multi-sensor fusion is essential for accurate 3D object detection in self-driving systems. Camera and LiDAR are the most commonly used sensors, and usually, their fusion happens at the early or late stages of 3D detectors with the help of regions of interest (RoIs). On the other hand, fusion at the intermediate level is more adaptive because it does not need RoIs from modalities but is complex as the features of both modalities are presented from different points of view. In this paper, we propose a new intermediate-level multi-modal fusion (mmFUSION) approach to overcome these challenges. First, the mmFUSION uses separate encoders for each modality to compute features at a desired lower space volume. Second, these features are fused through cross-modality and multi-modality attention mechanisms proposed in mmFUSION. The mmFUSION framework preserves multi-modal information and learns to complement modalities' deficiencies through attention weights. The strong multi-modal features from the mmFUSION framework are fed to a simple 3D detection head for 3D predictions. We evaluate mmFUSION on the KITTI and NuScenes dataset where it performs better than available early, intermediate, late, and even two-stage based fusion schemes. The code with the mmdetection3D project plugin will be publicly available soon.

Data augmentation (DA) has been widely leveraged in the realm of computer vision to alleviate the data shortage, whereas the DA in medical image analysis (MIA) faces multiple challenges. The prevalent DA approaches in MIA encompass conventional DA, synthetic DA, and automatic DA. However, the utilization of these approaches poses various challenges such as experience-driven design and intensive computation cost. Here, we propose an efficient and effective automatic DA method termed MedAugment. We propose the pixel augmentation space and spatial augmentation space and exclude the operations that can break the details and features within medical images. Besides, we propose a novel sampling strategy by sampling a limited number of operations from the two spaces. Moreover, we present a hyperparameter mapping relationship to produce a rational augmentation level and make the MedAugment fully controllable using a single hyperparameter. These revisions address the differences between natural and medical images. Extensive experimental results on four classification and three segmentation datasets demonstrate the superiority of MedAugment. We posit that the plug-and-use and training-free MedAugment holds the potential to make a valuable contribution to the medical field, particularly benefiting medical experts lacking foundational expertise in deep learning. Code is available at //github.com/NUS-Tim/MedAugment.

Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks. As a result, there has been an urgent need to evaluate LLMs as agents on challenging tasks in interactive environments. We present AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting. Our extensive test over 25 LLMs (including APIs and open-sourced models) shows that, while top commercial LLMs present a strong ability of acting as agents in complex environments, there is a significant disparity in performance between them and open-sourced competitors. It also serves as a component of an ongoing project with wider coverage and deeper consideration towards systematic LLM evaluation. Datasets, environments, and an integrated evaluation package for AgentBench are released at //github.com/THUDM/AgentBench

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

北京阿比特科技有限公司