亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motion forecasting plays a crucial role in autonomous driving, with the aim of predicting the future reasonable motions of traffic agents. Most existing methods mainly model the historical interactions between agents and the environment, and predict multi-modal trajectories in a feedforward process, ignoring potential trajectory changes caused by future interactions between agents. In this paper, we propose a novel Future Feedback Interaction Network (FFINet) to aggregate features the current observations and potential future interactions for trajectory prediction. Firstly, we employ different spatial-temporal encoders to embed the decomposed position vectors and the current position of each scene, providing rich features for the subsequent cross-temporal aggregation. Secondly, the relative interaction and cross-temporal aggregation strategies are sequentially adopted to integrate features in the current fusion module, observation interaction module, future feedback module and global fusion module, in which the future feedback module can enable the understanding of pre-action by feeding the influence of preview information to feedforward prediction. Thirdly, the comprehensive interaction features are further fed into final predictor to generate the joint predicted trajectories of multiple agents. Extensive experimental results show that our FFINet achieves the state-of-the-art performance on Argoverse 1 and Argoverse 2 motion forecasting benchmarks.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 縮放 · 邊界框 · Performer · 損失 ·
2023 年 12 月 29 日

As an important component of the detector localization branch, bounding box regression loss plays a significant role in object detection tasks. The existing bounding box regression methods usually consider the geometric relationship between the GT box and the predicted box, and calculate the loss by using the relative position and shape of the bounding boxes, while ignoring the influence of inherent properties such as the shape and scale of the bounding boxes on bounding box regression. In order to make up for the shortcomings of existing research, this article proposes a bounding box regression method that focuses on the shape and scale of the bounding box itself. Firstly, we analyzed the regression characteristics of the bounding boxes and found that the shape and scale factors of the bounding boxes themselves will have an impact on the regression results. Based on the above conclusions, we propose the Shape IoU method, which can calculate the loss by focusing on the shape and scale of the bounding box itself, thereby making the bounding box regression more accurate. Finally, we validated our method through a large number of comparative experiments, which showed that our method can effectively improve detection performance and outperform existing methods, achieving state-of-the-art performance in different detection tasks.Code is available at //github.com/malagoutou/Shape-IoU

This paper presents a method for achieving high-speed running of a quadruped robot by considering the actuator torque-speed operating region in reinforcement learning. The physical properties and constraints of the actuator are included in the training process to reduce state transitions that are infeasible in the real world due to motor torque-speed limitations. The gait reward is designed to distribute motor torque evenly across all legs, contributing to more balanced power usage and mitigating performance bottlenecks due to single-motor saturation. Additionally, we designed a lightweight foot to enhance the robot's agility. We observed that applying the motor operating region as a constraint helps the policy network avoid infeasible areas during sampling. With the trained policy, KAIST Hound, a 45 kg quadruped robot, can run up to 6.5 m/s, which is the fastest speed among electric motor-based quadruped robots.

With the rapid advancement of Large Language Models (LLMs) and their outstanding performance in semantic and contextual comprehension, the potential of LLMs in specialized domains warrants exploration. This paper introduces the NoteAid EHR Interaction Pipeline, an innovative approach developed using generative LLMs to assist in patient education, a task stemming from the need to aid patients in understanding Electronic Health Records (EHRs). Building upon the NoteAid work, we designed two novel tasks from the patient's perspective: providing explanations for EHR content that patients may not understand and answering questions posed by patients after reading their EHRs. We extracted datasets containing 10,000 instances from MIMIC Discharge Summaries and 876 instances from the MADE medical notes collection, respectively, executing the two tasks through the NoteAid EHR Interaction Pipeline with these data. Performance data of LLMs on these tasks were collected and constructed as the corresponding NoteAid EHR Interaction Dataset. Through a comprehensive evaluation of the entire dataset using LLM assessment and a rigorous manual evaluation of 64 instances, we showcase the potential of LLMs in patient education. Besides, the results provide valuable data support for future exploration and applications in this domain while also supplying high-quality synthetic datasets for in-house system training.

We present FerKD, a novel efficient knowledge distillation framework that incorporates partial soft-hard label adaptation coupled with a region-calibration mechanism. Our approach stems from the observation and intuition that standard data augmentations, such as RandomResizedCrop, tend to transform inputs into diverse conditions: easy positives, hard positives, or hard negatives. In traditional distillation frameworks, these transformed samples are utilized equally through their predictive probabilities derived from pretrained teacher models. However, merely relying on prediction values from a pretrained teacher, a common practice in prior studies, neglects the reliability of these soft label predictions. To address this, we propose a new scheme that calibrates the less-confident regions to be the context using softened hard groundtruth labels. Our approach involves the processes of hard regions mining + calibration. We demonstrate empirically that this method can dramatically improve the convergence speed and final accuracy. Additionally, we find that a consistent mixing strategy can stabilize the distributions of soft supervision, taking advantage of the soft labels. As a result, we introduce a stabilized SelfMix augmentation that weakens the variation of the mixed images and corresponding soft labels through mixing similar regions within the same image. FerKD is an intuitive and well-designed learning system that eliminates several heuristics and hyperparameters in former FKD solution. More importantly, it achieves remarkable improvement on ImageNet-1K and downstream tasks. For instance, FerKD achieves 81.2% on ImageNet-1K with ResNet-50, outperforming FKD and FunMatch by remarkable margins. Leveraging better pre-trained weights and larger architectures, our finetuned ViT-G14 even achieves 89.9%. Our code is available at //github.com/szq0214/FKD/tree/main/FerKD.

Collecting real-world optical flow datasets is a formidable challenge due to the high cost of labeling. A shortage of datasets significantly constrains the real-world performance of optical flow models. Building virtual datasets that resemble real scenarios offers a potential solution for performance enhancement, yet a domain gap separates virtual and real datasets. This paper introduces FlowDA, an unsupervised domain adaptive (UDA) framework for optical flow estimation. FlowDA employs a UDA architecture based on mean-teacher and integrates concepts and techniques in unsupervised optical flow estimation. Furthermore, an Adaptive Curriculum Weighting (ACW) module based on curriculum learning is proposed to enhance the training effectiveness. Experimental outcomes demonstrate that our FlowDA outperforms state-of-the-art unsupervised optical flow estimation method SMURF by 21.6%, real optical flow dataset generation method MPI-Flow by 27.8%, and optical flow estimation adaptive method FlowSupervisor by 30.9%, offering novel insights for enhancing the performance of optical flow estimation in real-world scenarios. The code will be open-sourced after the publication of this paper.

Previous head avatar methods have primarily relied on fixed-shape scene primitives, lacking a balance between geometric topology, texture details, and computational efficiency. Some hybrid neural network methods (e.g., planes and voxels) gained advantages in fast rendering, but they all used axis-aligned mappings to extract features explicitly, leading to issues of axis-aligned bias and feature dilution. We present GaussianHead, which utilizes deformable 3D Gaussians as building blocks for the head avatars. We propose a novel methodology where the core Gaussians designated for rendering undergo dynamic diffusion before being mapped onto a factor plane to acquire canonical sub-factors. Through our factor blending strategy, the canonical features for the core Gaussians used in rendering are obtained. This approach deviates from the previous practice of utilizing axis-aligned mappings, especially improving the representation capability of subtle structures such as teeth, wrinkles, hair, and even facial pores. In comparison to state-of-the-art methods, our unique primitive selection and factor decomposition in GaussianHead deliver superior visual results while maintaining rendering performance (0.1 seconds per frame). Code will released for research.

Data plays a fundamental role in the training of Large Language Models (LLMs). Effective data management, particularly in the formulation of a well-suited training dataset, holds significance for enhancing model performance and improving training efficiency during pretraining and supervised fine-tuning phases. Despite the considerable importance of data management, the current research community still falls short in providing a systematic analysis of the rationale behind management strategy selection, its consequential effects, methodologies for evaluating curated datasets, and the ongoing pursuit of improved strategies. Consequently, the exploration of data management has attracted more and more attention among the research community. This survey provides a comprehensive overview of current research in data management within both the pretraining and supervised fine-tuning stages of LLMs, covering various noteworthy aspects of data management strategy design: data quantity, data quality, domain/task composition, etc. Looking toward the future, we extrapolate existing challenges and outline promising directions for development in this field. Therefore, this survey serves as a guiding resource for practitioners aspiring to construct powerful LLMs through effective data management practices. The collection of the latest papers is available at //github.com/ZigeW/data_management_LLM.

Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks. As a result, there has been an urgent need to evaluate LLMs as agents on challenging tasks in interactive environments. We present AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting. Our extensive test over 25 LLMs (including APIs and open-sourced models) shows that, while top commercial LLMs present a strong ability of acting as agents in complex environments, there is a significant disparity in performance between them and open-sourced competitors. It also serves as a component of an ongoing project with wider coverage and deeper consideration towards systematic LLM evaluation. Datasets, environments, and an integrated evaluation package for AgentBench are released at //github.com/THUDM/AgentBench

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.

北京阿比特科技有限公司