Likelihood profiling is an efficient and powerful frequentist approach for parameter estimation, uncertainty quantification and practical identifiablity analysis. Unfortunately, these methods cannot be easily applied for stochastic models without a tractable likelihood function. Such models are typical in many fields of science, rendering these classical approaches impractical in these settings. To address this limitation, we develop a new approach to generalising the methods of likelihood profiling for situations when the likelihood cannot be evaluated but stochastic simulations of the assumed data generating process are possible. Our approach is based upon recasting developments from generalised Bayesian inference into a frequentist setting. We derive a method for constructing generalised likelihood profiles and calibrating these profiles to achieve desired frequentist coverage for a given coverage level. We demonstrate the performance of our method on realistic examples from the literature and highlight the capability of our approach for the purpose of practical identifability analysis for models with intractable likelihoods.
Model overconfidence and poor calibration are common in machine learning and difficult to account for when applying standard empirical risk minimization. In this work, we propose a novel method to alleviate these problems that we call odd-$k$-out learning (OKO), which minimizes the cross-entropy error for sets rather than for single examples. This naturally allows the model to capture correlations across data examples and achieves both better accuracy and calibration, especially in limited training data and class-imbalanced regimes. Perhaps surprisingly, OKO often yields better calibration even when training with hard labels and dropping any additional calibration parameter tuning, such as temperature scaling. We provide theoretical justification, establishing that OKO naturally yields better calibration, and provide extensive experimental analyses that corroborate our theoretical findings. We emphasize that OKO is a general framework that can be easily adapted to many settings and the trained model can be applied to single examples at inference time, without introducing significant run-time overhead or architecture changes.
Throughout the life sciences we routinely seek to interpret measurements and observations using parameterised mechanistic mathematical models. A fundamental and often overlooked choice in this approach involves relating the solution of a mathematical model with noisy and incomplete measurement data. This is often achieved by assuming that the data are noisy measurements of the solution of a deterministic mathematical model, and that measurement errors are additive and normally distributed. While this assumption of additive Gaussian noise is extremely common and simple to implement and interpret, it is often unjustified and can lead to poor parameter estimates and non-physical predictions. One way to overcome this challenge is to implement a different measurement error model. In this review, we demonstrate how to implement a range of measurement error models in a likelihood-based framework for estimation, identifiability analysis, and prediction. We focus our implementation within a frequentist profile likelihood-based framework, but our approach is directly relevant to other approaches including sampling-based Bayesian methods. Case studies, motivated by simple caricature models routinely used in the systems biology and mathematical biology literature, illustrate how the same ideas apply to different types of mathematical models. Open-source Julia code to reproduce results is available on GitHub.
This work is motivated by goal-oriented sensitivity analysis of inputs/outputs of complex simulators. More precisely we are interested in the ranking of the uncertain input variables that impact the most a feasible design domain. Most sensitivity analysis methods deal with scalar outputs. In this paper, we propose a way to perform sensitivity analysis when dealing with set-valued outputs. Our new methodology is driven by sensitivity analysis on excursion sets but can also be applied to setvalued simulators as in viability field, or when dealing with maps such as pollutant concentration maps or flooding zone maps. We propose a method based on the Hilbert Schmidt Independence Criterion (HSIC) with a kernel tailored to sets as outputs. A first contribution is the proof that this kernel is characteristic (i.e injectivity of the embedding in the associated Reproducing Kernel Hilbert Space), a required property for the HSIC interpretation in a sensitivity analysis context. We propose then to compute the HSIC-ANOVA indices which allow a decomposition of the input contributions. Using these indices, we can identify which inputs should be neglected (screening) and we can rank the others by influence (ranking). The estimation of these indices is also adapted to the set-valued outputs. Finally we test the proposed method on two test cases of excursion sets.
Profile likelihoods are rarely used in geostatistical models due to the computational burden imposed by repeated decompositions of large variance matrices. Accounting for uncertainty in covariance parameters can be highly consequential in geostatistical models as some covariance parameters are poorly identified, the problem is severe enough that the differentiability parameter of the Matern correlation function is typically treated as fixed. The problem is compounded with anisotropic spatial models as there are two additional parameters to consider. In this paper, we make the following contributions: 1, A methodology is created for profile likelihoods for Gaussian spatial models with Mat\'ern family of correlation functions, including anisotropic models. This methodology adopts a novel reparametrization for generation of representative points, and uses GPUs for parallel profile likelihoods computation in software implementation. 2, We show the profile likelihood of the Mat\'ern shape parameter is often quite flat but still identifiable, it can usually rule out very small values. 3, Simulation studies and applications on real data examples show that profile-based confidence intervals of covariance parameters and regression parameters have superior coverage to the traditional standard Wald type confidence intervals.
In this work, geometry optimization of mechanical truss using computer-aided finite element analysis is presented. The shape of the truss is a dominant factor in determining the capacity of load it can bear. At a given parameter space, our goal is to find the parameters of a hull that maximize the load-bearing capacity and also don't yield to the induced stress. We rely on finite element analysis, which is a computationally costly design analysis tool for design evaluation. For such expensive to-evaluate functions, we chose Bayesian optimization as our optimization framework which has empirically proven sample efficient than other simulation-based optimization methods. By utilizing Bayesian optimization algorithms, the truss design involves iteratively evaluating a set of candidate truss designs and updating a probabilistic model of the design space based on the results. The model is used to predict the performance of each candidate design, and the next candidate design is selected based on the prediction and an acquisition function that balances exploration and exploitation of the design space. Our result can be used as a baseline for future study on AI-based optimization in expensive engineering domains especially in finite element Analysis.
Sensitivity to unmeasured confounding is not typically a primary consideration in designing treated-control comparisons in observational studies. We introduce a framework allowing researchers to optimize robustness to omitted variable bias at the design stage using a measure called design sensitivity. Design sensitivity, which describes the asymptotic power of a sensitivity analysis, allows transparent assessment of the impact of different estimation strategies on sensitivity. We apply this general framework to two commonly-used sensitivity models, the marginal sensitivity model and the variance-based sensitivity model. By comparing design sensitivities, we interrogate how key features of weighted designs, including choices about trimming of weights and model augmentation, impact robustness to unmeasured confounding, and how these impacts may differ for the two different sensitivity models. We illustrate the proposed framework on a study examining drivers of support for the 2016 Colombian peace agreement.
We derive general bounds on the probability that the empirical first-passage time $\overline{\tau}_n\equiv \sum_{i=1}^n\tau_i/n$ of a reversible ergodic Markov process inferred from a sample of $n$ independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct non-asymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.
Federal administrative data, such as tax data, are invaluable for research, but because of privacy concerns, access to these data is typically limited to select agencies and a few individuals. An alternative to sharing microlevel data is to allow individuals to query statistics without directly accessing the confidential data. This paper studies the feasibility of using differentially private (DP) methods to make certain queries while preserving privacy. We also include new methodological adaptations to existing DP regression methods for using new data types and returning standard error estimates. We define feasibility as the impact of DP methods on analyses for making public policy decisions and the queries accuracy according to several utility metrics. We evaluate the methods using Internal Revenue Service data and public-use Current Population Survey data and identify how specific data features might challenge some of these methods. Our findings show that DP methods are feasible for simple, univariate statistics but struggle to produce accurate regression estimates and confidence intervals. To the best of our knowledge, this is the first comprehensive statistical study of DP regression methodology on real, complex datasets, and the findings have significant implications for the direction of a growing research field and public policy.
The Gaussian graphical model (GGM) incorporates an undirected graph to represent the conditional dependence between variables, with the precision matrix encoding partial correlation between pair of variables given the others. To achieve flexible and accurate estimation and inference of GGM, we propose the novel method FLAG, which utilizes the random effects model for pairwise conditional regression to estimate the precision matrix and applies statistical tests to recover the graph. Compared with existing methods, FLAG has several unique advantages: (i) it provides accurate estimation without sparsity assumptions on the precision matrix, (ii) it allows for element-wise inference of the precision matrix, (iii) it achieves computational efficiency by developing an efficient PX-EM algorithm and a MM algorithm accelerated with low-rank updates, and (iv) it enables joint estimation of multiple graphs using FLAG-Meta or FLAG-CA. The proposed methods are evaluated using various simulation settings and real data applications, including gene expression in the human brain, term association in university websites, and stock prices in the U.S. financial market. The results demonstrate that FLAG and its extensions provide accurate precision estimation and graph recovery.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.