Assistive ankle-foot orthoses (AAFOs) are powerful solutions to assist or rehabilitate gait on humans. Existing AAFO technologies include passive, quasi-passive, and active principles to provide assistance to the users, and their mechanical configuration and control depend on the eventual support they aim for within the gait pattern. In this research we analyze the state-of-the-art of AAFO and classify the different approaches into clusters, describing their basis and working principles. Additionally, we reviewed the purpose and experimental validation of the devices, providing the reader with a better view of the technology readiness level. Finally, the reviewed designs, limitations, and future steps in the field are summarized and discussed.
An explanation method called SurvBeX is proposed to interpret predictions of the machine learning survival black-box models. The main idea behind the method is to use the modified Beran estimator as the surrogate explanation model. Coefficients, incorporated into Beran estimator, can be regarded as values of the feature impacts on the black-box model prediction. Following the well-known LIME method, many points are generated in a local area around an example of interest. For every generated example, the survival function of the black-box model is computed, and the survival function of the surrogate model (the Beran estimator) is constructed as a function of the explanation coefficients. In order to find the explanation coefficients, it is proposed to minimize the mean distance between the survival functions of the black-box model and the Beran estimator produced by the generated examples. Many numerical experiments with synthetic and real survival data demonstrate the SurvBeX efficiency and compare the method with the well-known method SurvLIME. The method is also compared with the method SurvSHAP. The code implementing SurvBeX is available at: //github.com/DanilaEremenko/SurvBeX
Black holes are believed to be fast scramblers of information, as they rapidly destroy local correlations and spread information throughout the system. Unscrambling this information is in principle possible, given perfect knowledge of the black hole internal dynamics[arXiv:1710.03363]. This work shows that even if one doesn't know the internal dynamics of the black hole, information can be efficiently decoded from an unknown black hole by observing the outgoing Hawking radiation. We show that, surprisingly, black holes with an unknown internal dynamics that are rapidly scrambling but not fully chaotic admit Clifford decoders: the salient properties of a scrambling unitary can be efficiently recovered even if exponentially complex. This recovery is possible because all the redundant complexity can be described as an entropy, the stabilizer entropy. We show how for non-chaotic black holes the stabilizer entropy can be efficiently pumped away, just as in a refrigerator.
We present a novel unsupervised machine learning shock capturing algorithm based on Gaussian Mixture Models (GMMs). The proposed GMM sensor demonstrates remarkable accuracy in detecting shocks and is robust across diverse test cases without the need for parameter tuning. We compare the GMM-based sensor with state-of-the-art alternatives. All methods are integrated into a high-order compressible discontinuous Galerkin solver where artificial viscosity can be modulated to capture shocks. Supersonic test cases, including high Reynolds numbers, showcase the sensor's performance, demonstrating the same effectiveness as fine-tuned state-of-the-art sensors. %The nodal DG aproach allows for potential applications in sub-cell flux-differencing formulations, supersonic feature detection, and mesh refinement. The adaptive nature and ability to function without extensive training datasets make this GMM-based sensor suitable for complex geometries and varied flow configurations. Our study reveals the potential of unsupervised machine learning methods, exemplified by the GMM sensor, to improve the robustness and efficiency of advanced CFD codes.
We derive a model for the optimization of the bending and torsional rigidities of non-homogeneous elastic rods. This is achieved by studying a sharp interface shape optimization problem with perimeter penalization, that treats both rigidities as objectives. We then formulate a phase field approximation of the optimization problem and show the convergence to the aforementioned sharp interface model via $\Gamma$-convergence. In the final part of this work we numerically approximate minimizers of the phase field problem by using a steepest descent approach and relate the resulting optimal shapes to the development of the morphology of plant stems.
In recent years, the concept of introducing physics to machine learning has become widely popular. Most physics-inclusive ML-techniques however are still limited to a single geometry or a set of parametrizable geometries. Thus, there remains the need to train a new model for a new geometry, even if it is only slightly modified. With this work we introduce a technique with which it is possible to learn approximate solutions to the steady-state Navier--Stokes equations in varying geometries without the need of parametrization. This technique is based on a combination of a U-Net-like CNN and well established discretization methods from the field of the finite difference method.The results of our physics-aware CNN are compared to a state-of-the-art data-based approach. Additionally, it is also shown how our approach performs when combined with the data-based approach.
Large enterprises face a crucial imperative to achieve the Sustainable Development Goals (SDGs), especially goal 13, which focuses on combating climate change and its impacts. To mitigate the effects of climate change, reducing enterprise Scope 3 (supply chain emissions) is vital, as it accounts for more than 90\% of total emission inventories. However, tracking Scope 3 emissions proves challenging, as data must be collected from thousands of upstream and downstream suppliers.To address the above mentioned challenges, we propose a first-of-a-kind framework that uses domain-adapted NLP foundation models to estimate Scope 3 emissions, by utilizing financial transactions as a proxy for purchased goods and services. We compared the performance of the proposed framework with the state-of-art text classification models such as TF-IDF, word2Vec, and Zero shot learning. Our results show that the domain-adapted foundation model outperforms state-of-the-art text mining techniques and performs as well as a subject matter expert (SME). The proposed framework could accelerate the Scope 3 estimation at Enterprise scale and will help to take appropriate climate actions to achieve SDG 13.
In order to fully harness the potential of dielectric elastomer actu-ators (DEAs) in soft robots, advanced control methods are need-ed. An important groundwork for this is the development of a control-oriented model that can adequately describe the underly-ing dynamics of a DEA. A common feature of existing models is that always custom-made DEAs were investigated. This makes the modelling process easier, as all specifications and the struc-ture of the actuator are well known. In the case of a commercial actuator, however, only the information from the manufacturer is available and must be checked or completed during the modelling process. The aim of this paper is to explore how a commercial stacked silicone-based DEA can be modelled and how complex the model should be to properly replicate the features of the actu-ator. The static description has demonstrated the suitability of Hooke's law. In the case of dynamic description, it is shown that no viscoelastic model is needed for control-oriented modelling. However, if all features of the DEA are considered, the general-ized Kelvin-Maxwell model with three Maxwell elements shows good results, stability and computational efficiency.
Navigating automated driving systems (ADSs) through complex driving environments is difficult. Predicting the driving behavior of surrounding human-driven vehicles (HDVs) is a critical component of an ADS. This paper proposes an enhanced motion-planning approach for an ADS in a highway-merging scenario. The proposed enhanced approach utilizes the results of two aspects: the driving behavior and long-term trajectory of surrounding HDVs, which are coupled using a hierarchical model that is used for the motion planning of an ADS to improve driving safety.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.