Cumulative memory -- the sum of space used per step over the duration of a computation -- is a fine-grained measure of time-space complexity that was introduced to analyze cryptographic applications like password hashing. It is a more accurate cost measure for algorithms that have infrequent spikes in memory usage and are run in environments such as cloud computing that allow dynamic allocation and de-allocation of resources during execution, or when many multiple instances of an algorithm are interleaved in parallel. We prove the first lower bounds on cumulative memory complexity for both sequential classical computation and quantum circuits. Moreover, we develop general paradigms for bounding cumulative memory complexity inspired by the standard paradigms for proving time-space tradeoff lower bounds that can only lower bound the maximum space used during an execution. The resulting lower bounds on cumulative memory that we obtain are just as strong as the best time-space tradeoff lower bounds, which are very often known to be tight. Although previous results for pebbling and random oracle models have yielded time-space tradeoff lower bounds larger than the cumulative memory complexity, our results show that in general computational models such separations cannot follow from known lower bound techniques and are not true for many functions. Among many possible applications of our general methods, we show that any classical sorting algorithm with success probability at least $1/\text{poly}(n)$ requires cumulative memory $\tilde \Omega(n^2)$, any classical matrix multiplication algorithm requires cumulative memory $\Omega(n^6/T)$, any quantum sorting circuit requires cumulative memory $\Omega(n^3/T)$, and any quantum circuit that finds $k$ disjoint collisions in a random function requires cumulative memory $\Omega(k^3n/T^2)$.
Individuals with complex communication needs (CCN) often rely on augmentative and alternative communication (AAC) systems to have conversations and communique their wants. Such systems allow message authoring by arranging pictograms in sequence. However, the difficulty of finding the desired item to complete a sentence can increase as the user's vocabulary increases. This paper proposes using BERTimbau, a Brazilian Portuguese version of BERT, for pictogram prediction in AAC systems. To finetune BERTimbau, we constructed an AAC corpus for Brazilian Portuguese to use as a training corpus. We tested different approaches to representing a pictogram for prediction: as a word (using pictogram captions), as a concept (using a dictionary definition), and as a set of synonyms (using related terms). We also evaluated the usage of images for pictogram prediction. The results demonstrate that using embeddings computed from the pictograms' caption, synonyms, or definitions have a similar performance. Using synonyms leads to lower perplexity, but using captions leads to the highest accuracies. This paper provides insight into how to represent a pictogram for prediction using a BERT-like model and the potential of using images for pictogram prediction.
Annotation of multimedia data by humans is time-consuming and costly, while reliable automatic generation of semantic metadata is a major challenge. We propose a framework to extract semantic metadata from automatically generated video captions. As metadata, we consider entities, the entities' properties, relations between entities, and the video category. We employ two state-of-the-art dense video captioning models with masked transformer (MT) and parallel decoding (PVDC) to generate captions for videos of the ActivityNet Captions dataset. Our experiments show that it is possible to extract entities, their properties, relations between entities, and the video category from the generated captions. We observe that the quality of the extracted information is mainly influenced by the quality of the event localization in the video as well as the performance of the event caption generation.
Robotic pick and place tasks are symmetric under translations and rotations of both the object to be picked and the desired place pose. For example, if the pick object is rotated or translated, then the optimal pick action should also rotate or translate. The same is true for the place pose; if the desired place pose changes, then the place action should also transform accordingly. A recently proposed pick and place framework known as Transporter Net captures some of these symmetries, but not all. This paper analytically studies the symmetries present in planar robotic pick and place and proposes a method of incorporating equivariant neural models into Transporter Net in a way that captures all symmetries. The new model, which we call Equivariant Transporter Net, is equivariant to both pick and place symmetries and can immediately generalize pick and place knowledge to different pick and place poses. We evaluate the new model empirically and show that it is much more sample efficient than the non-symmetric version, resulting in a system that can imitate demonstrated pick and place behavior using very few human demonstrations on a variety of imitation learning tasks.
Electronic exams (e-exams) have the potential to substantially reduce the effort required for conducting an exam through automation. Yet, care must be taken to sacrifice neither task complexity nor constructive alignment nor grading fairness in favor of automation. To advance automation in the design and fair grading of (functional programming) e-exams, we introduce the following: A novel algorithm to check Proof Puzzles based on finding correct sequences of proof lines that improves fairness compared to an existing, edit distance based algorithm; an open-source static analysis tool to check source code for task relevant features by traversing the abstract syntax tree; a higher-level language and open-source tool to specify regular expressions that makes creating complex regular expressions less error-prone. Our findings are embedded in a complete experience report on transforming a paper exam to an e-exam. We evaluated the resulting e-exam by analyzing the degree of automation in the grading process, asking students for their opinion, and critically reviewing our own experiences. Almost all tasks can be graded automatically at least in part (correct solutions can almost always be detected as such), the students agree that an e-exam is a fitting examination format for the course but are split on how well they can express their thoughts compared to a paper exam, and examiners enjoy a more time-efficient grading process while the point distribution in the exam results was almost exactly the same compared to a paper exam.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.
Intent classification and slot filling are two essential tasks for natural language understanding. They often suffer from small-scale human-labeled training data, resulting in poor generalization capability, especially for rare words. Recently a new language representation model, BERT (Bidirectional Encoder Representations from Transformers), facilitates pre-training deep bidirectional representations on large-scale unlabeled corpora, and has created state-of-the-art models for a wide variety of natural language processing tasks after simple fine-tuning. However, there has not been much effort on exploring BERT for natural language understanding. In this work, we propose a joint intent classification and slot filling model based on BERT. Experimental results demonstrate that our proposed model achieves significant improvement on intent classification accuracy, slot filling F1, and sentence-level semantic frame accuracy on several public benchmark datasets, compared to the attention-based recurrent neural network models and slot-gated models.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.