Conditional copulas are useful tools for modeling the dependence between multiple response variables that may vary with a given set of predictor variables. Conditional dependence measures such as conditional Kendall's tau and Spearman's rho that can be expressed as functionals of the conditional copula are often used to evaluate the strength of dependence conditioning on the covariates. In general, semiparametric estimation methods of conditional copulas rely on an assumed parametric copula family where the copula parameter is assumed to be a function of the covariates. The functional relationship can be estimated nonparametrically using different techniques but it is required to choose an appropriate copula model from various candidate families. In this paper, by employing the empirical checkerboard Bernstein copula (ECBC) estimator we propose a fully nonparametric approach for estimating conditional copulas, which doesn't require any selection of parametric copula models. Closed-form estimates of the conditional dependence measures are derived directly from the proposed ECBC-based conditional copula estimator. We provide the large-sample consistency of the proposed estimator as well as the estimates of conditional dependence measures. The finite-sample performance of the proposed estimator and comparison with semiparametric methods are investigated through simulation studies. An application to real case studies is also provided.
An assumption that has often been used by researchers to model the interference in a wireless network is the unit disk graph model. While many theoretical results and performance guarantees have been obtained under this model, an open research direction is to extend these results to hypergraph interference models. Motivated by recent results that the worst-case performance of the distributed maximal scheduling algorithm is characterized by the interference degree of the hypergraph, in the present work we investigate properties of the interference degree of the hypergraph and the structure of hypergraphs arising from physical constraints. We show that the problem of computing the interference degree of a hypergraph is NP-hard and we prove some properties and results concerning this hypergraph invariant. We investigate which hypergraphs are realizable, i.e. which hypergraphs arise in practice, based on physical constraints, as the interference model of a wireless network. In particular, a question that arises naturally is: what is the maximal value of $r$ such that the hypergraph $K_{1,r}$ is realizable? We determine this quantity for various integral and nonintegral values of the path loss exponent of signal propagation. We also investigate hypergraphs generated by line networks.
Despite their impressive capabilities, large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information, a phenomenon commonly known as ``hallucination''. In this work, we propose a simple \textit{Induce-then-Contrast} Decoding (ICD) strategy to alleviate hallucinations. We first construct a factually weak LLM by inducing hallucinations from the original LLMs. Then, we penalize these induced hallucinations during decoding to enhance the factuality of the generated content. Concretely, we determine the final next-token predictions by amplifying the predictions from the original model and downplaying the induced untruthful predictions via contrastive decoding. Experimental results on both discrimination-based and generation-based hallucination evaluation benchmarks, such as TruthfulQA and \textsc{FActScore}, demonstrate that our proposed ICD methods can effectively enhance the factuality of LLMs across various model sizes and families. For example, when equipped with ICD, Llama2-7B-Chat and Mistral-7B-Instruct achieve performance comparable to ChatGPT and GPT4 on TruthfulQA, respectively.
Randomized controlled trials generate experimental variation that can credibly identify causal effects, but often suffer from limited scale, while observational datasets are large, but often violate desired identification assumptions. To improve estimation efficiency, I propose a method that leverages imperfect instruments - pretreatment covariates that satisfy the relevance condition but may violate the exclusion restriction. I show that these imperfect instruments can be used to derive moment restrictions that, in combination with the experimental data, improve estimation efficiency. I outline estimators for implementing this strategy, and show that my methods can reduce variance by up to 50%; therefore, only half of the experimental sample is required to attain the same statistical precision. I apply my method to a search listing dataset from Expedia that studies the causal effect of search rankings on clicks, and show that the method can substantially improve the precision.
The sliding cubes model is a well-established theoretical framework that supports the analysis of reconfiguration algorithms for modular robots consisting of face-connected cubes. The best algorithm currently known for the reconfiguration problem, by Abel and Kominers [arXiv, 2011], uses O(n3) moves to transform any n-cube configuration into any other n-cube configuration. As is common in the literature, this algorithm reconfigures the input into an intermediate canonical shape. In this paper we present an in-place algorithm that reconfigures any n-cube configuration into a compact canonical shape using a number of moves proportional to the sum of coordinates of the input cubes. This result is asymptotically optimal. Furthermore, our algorithm directly extends to dimensions higher than three.
This tutorial aims to establish connections between polynomial modular multiplication over a ring to circular convolution and discrete Fourier transform (DFT). The main goal is to extend the well-known theory of DFT in signal processing (SP) to other applications involving polynomials in a ring such as homomorphic encryption (HE). HE allows any third party to operate on the encrypted data without decrypting it in advance. Since most HE schemes are constructed from the ring-learning with errors (R-LWE) problem, efficient polynomial modular multiplication implementation becomes critical. Any improvement in the execution of these building blocks would have significant consequences for the global performance of HE. This lecture note describes three approaches to implementing long polynomial modular multiplication using the number theoretic transform (NTT): zero-padded convolution, without zero-padding, also referred to as negative wrapped convolution (NWC), and low-complexity NWC (LC-NWC).
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.