The objectives of this research are analysing the performance of the state-of-the-art machine learning techniques for classifying COVID-19 from cough sound and identifying the model(s) that consistently perform well across different cough datasets. Different performance evaluation metrics (such as precision, sensitivity, specificity, AUC, accuracy, etc.) make it difficult to select the best performance model. To address this issue, in this paper, we propose an ensemble-based multi-criteria decision making (MCDM) method for selecting top performance machine learning technique(s) for COVID-19 cough classification. We use four cough datasets, namely Cambridge, Coswara, Virufy, and NoCoCoDa to verify the proposed method. At first, our proposed method uses the audio features of cough samples and then applies machine learning (ML) techniques to classify them as COVID-19 or non-COVID-19. Then, we consider a multi-criteria decision-making (MCDM) method that combines ensemble technologies (i.e., soft and hard) to select the best model. In MCDM, we use the technique for order preference by similarity to ideal solution (TOPSIS) for ranking purposes, while entropy is applied to calculate evaluation criteria weights. In addition, we apply the feature reduction process through recursive feature elimination with cross-validation under different estimators. The results of our empirical evaluations show that the proposed method outperforms the state-of-the-art models.
The increasing concerns about data privacy and security drive an emerging field of studying privacy-preserving machine learning from isolated data sources, i.e., federated learning. A class of federated learning, \textit{vertical federated learning}, where different parties hold different features for common users, has a great potential of driving a great variety of business cooperation among enterprises in many fields. In machine learning, decision tree ensembles such as gradient boosting decision trees (GBDT) and random forest are widely applied powerful models with high interpretability and modeling efficiency. However, state-of-art vertical federated learning frameworks adapt anonymous features to avoid possible data breaches, makes the interpretability of the model compromised. To address this issue in the inference process, in this paper, we firstly make a problem analysis about the necessity of disclosure meanings of feature to Guest Party in vertical federated learning. Then we find the prediction result of a tree could be expressed as the intersection of results of sub-models of the tree held by all parties. With this key observation, we protect data privacy and allow the disclosure of feature meaning by concealing decision paths and adapt a communication-efficient secure computation method for inference outputs. The advantages of Fed-EINI will be demonstrated through both theoretical analysis and extensive numerical results. We improve the interpretability of the model by disclosing the meaning of features while ensuring efficiency and accuracy.
Selective inference (post-selection inference) is a methodology that has attracted much attention in recent years in the fields of statistics and machine learning. Naive inference based on data that are also used for model selection tends to show an overestimation, and so the selective inference conditions the event that the model was selected. In this paper, we develop selective inference in propensity score analysis with a semiparametric approach, which has become a standard tool in causal inference. Specifically, for the most basic causal inference model in which the causal effect can be written as a linear sum of confounding variables, we conduct Lasso-type variable selection by adding an $\ell_1$ penalty term to the loss function that gives a semiparametric estimator. Confidence intervals are then given for the coefficients of the selected confounding variables, conditional on the event of variable selection, with asymptotic guarantees. An important property of this method is that it does not require modeling of nonparametric regression functions for the outcome variables, as is usually the case with semiparametric propensity score analysis.
Motivated by the recent work [He-Yuan, Balanced Augmented Lagrangian Method for Convex Programming, arXiv: 2108.08554v1, (2021)], a novel Augmented Lagrangian Method (ALM) has been proposed for solving a family of convex optimization problem subject to equality or inequality constraint. This new method is then extended to solve the multi-block separable convex optimization problem, and two related primal-dual hybrid gradient algorithms are also discussed. Preliminary and some new convergence results are established with the aid of variational analysis for both the saddle point of the problem and the first-order optimality conditions of involved subproblems.
Video transformers have achieved impressive results on major video recognition benchmarks, however they suffer from high computational cost. In this paper, we present STTS, a token selection framework that dynamically selects a few informative tokens in both temporal and spatial dimensions conditioned on input video samples. Specifically, we formulate token selection as a ranking problem, which estimates the importance of each token through a lightweight selection network and only those with top scores will be used for downstream evaluation. In the temporal dimension, we keep the frames that are most relevant for recognizing action categories, while in the spatial dimension, we identify the most discriminative region in feature maps without affecting spatial context used in a hierarchical way in most video transformers. Since the decision of token selection is non-differentiable, we employ a perturbed-maximum based differentiable Top-K operator for end-to-end training. We conduct extensive experiments on Kinetics-400 with a recently introduced video transformer backbone, MViT. Our framework achieves similar results while requiring 20% less computation. We also demonstrate that our approach is compatible with other transformer architectures.
The usage of smartphone-collected respiratory sound, trained with deep learning models, for detecting and classifying COVID-19 becomes popular recently. It removes the need for in-person testing procedures especially for rural regions where related medical supplies, experienced workers, and equipment are limited. However, existing sound-based diagnostic approaches are trained in a fully supervised manner, which requires large scale well-labelled data. It is critical to discover new methods to leverage unlabelled respiratory data, which can be obtained more easily. In this paper, we propose a novel self-supervised learning enabled framework for COVID-19 cough classification. A contrastive pre-training phase is introduced to train a Transformer-based feature encoder with unlabelled data. Specifically, we design a random masking mechanism to learn robust representations of respiratory sounds. The pre-trained feature encoder is then fine-tuned in the downstream phase to perform cough classification. In addition, different ensembles with varied random masking rates are also explored in the downstream phase. Through extensive evaluations, we demonstrate that the proposed contrastive pre-training, the random masking mechanism, and the ensemble architecture contribute to improving cough classification performance.
Predicting properties of nodes in a graph is an important problem with applications in a variety of domains. Graph-based Semi-Supervised Learning (SSL) methods aim to address this problem by labeling a small subset of the nodes as seeds and then utilizing the graph structure to predict label scores for the rest of the nodes in the graph. Recently, Graph Convolutional Networks (GCNs) have achieved impressive performance on the graph-based SSL task. In addition to label scores, it is also desirable to have confidence scores associated with them. Unfortunately, confidence estimation in the context of GCN has not been previously explored. We fill this important gap in this paper and propose ConfGCN, which estimates labels scores along with their confidences jointly in GCN-based setting. ConfGCN uses these estimated confidences to determine the influence of one node on another during neighborhood aggregation, thereby acquiring anisotropic capabilities. Through extensive analysis and experiments on standard benchmarks, we find that ConfGCN is able to outperform state-of-the-art baselines. We have made ConfGCN's source code available to encourage reproducible research.
This work presents a new strategy for multi-class classification that requires no class-specific labels, but instead leverages pairwise similarity between examples, which is a weaker form of annotation. The proposed method, meta classification learning, optimizes a binary classifier for pairwise similarity prediction and through this process learns a multi-class classifier as a submodule. We formulate this approach, present a probabilistic graphical model for it, and derive a surprisingly simple loss function that can be used to learn neural network-based models. We then demonstrate that this same framework generalizes to the supervised, unsupervised cross-task, and semi-supervised settings. Our method is evaluated against state of the art in all three learning paradigms and shows a superior or comparable accuracy, providing evidence that learning multi-class classification without multi-class labels is a viable learning option.
Accurately classifying malignancy of lesions detected in a screening scan plays a critical role in reducing false positives. Through extracting and analyzing a large numbers of quantitative image features, radiomics holds great potential to differentiate the malignant tumors from benign ones. Since not all radiomic features contribute to an effective classifying model, selecting an optimal feature subset is critical. This work proposes a new multi-objective based feature selection (MO-FS) algorithm that considers both sensitivity and specificity simultaneously as the objective functions during the feature selection. In MO-FS, we developed a modified entropy based termination criterion (METC) to stop the algorithm automatically rather than relying on a preset number of generations. We also designed a solution selection methodology for multi-objective learning using the evidential reasoning approach (SMOLER) to automatically select the optimal solution from the Pareto-optimal set. Furthermore, an adaptive mutation operation was developed to generate the mutation probability in MO-FS automatically. The MO-FS was evaluated for classifying lung nodule malignancy in low-dose CT and breast lesion malignancy in digital breast tomosynthesis. Compared with other commonly used feature selection methods, the experimental results for both lung nodule and breast lesion malignancy classification demonstrated that the feature set by selected MO-FS achieved better classification performance.
Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.
This work presents a region-growing image segmentation approach based on superpixel decomposition. From an initial contour-constrained over-segmentation of the input image, the image segmentation is achieved by iteratively merging similar superpixels into regions. This approach raises two key issues: (1) how to compute the similarity between superpixels in order to perform accurate merging and (2) in which order those superpixels must be merged together. In this perspective, we firstly introduce a robust adaptive multi-scale superpixel similarity in which region comparisons are made both at content and common border level. Secondly, we propose a global merging strategy to efficiently guide the region merging process. Such strategy uses an adpative merging criterion to ensure that best region aggregations are given highest priorities. This allows to reach a final segmentation into consistent regions with strong boundary adherence. We perform experiments on the BSDS500 image dataset to highlight to which extent our method compares favorably against other well-known image segmentation algorithms. The obtained results demonstrate the promising potential of the proposed approach.