亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by the recent work [He-Yuan, Balanced Augmented Lagrangian Method for Convex Programming, arXiv: 2108.08554v1, (2021)], a novel Augmented Lagrangian Method (ALM) has been proposed for solving a family of convex optimization problem subject to equality or inequality constraint. This new method is then extended to solve the multi-block separable convex optimization problem, and two related primal-dual hybrid gradient algorithms are also discussed. Preliminary and some new convergence results are established with the aid of variational analysis for both the saddle point of the problem and the first-order optimality conditions of involved subproblems.

相關內容

In recent work (Maierhofer & Huybrechs, 2022, Adv. Comput. Math.), the authors showed that least-squares oversampling can improve the convergence properties of collocation methods for boundary integral equations involving operators of certain pseudo-differential form. The underlying principle is that the discrete method approximates a Bubnov$-$Galerkin method in a suitable sense. In the present work, we extend this analysis to the case when the integral operator is perturbed by a compact operator $\mathcal{K}$ which is continuous as a map on Sobolev spaces on the boundary, $\mathcal{K}:H^{p}\rightarrow H^{q}$ for all $p,q\in\mathbb{R}$. This study is complicated by the fact that both the test and trial functions in the discrete Bubnov-Galerkin orthogonality conditions are modified over the unperturbed setting. Our analysis guarantees that previous results concerning optimal convergence rates and sufficient rates of oversampling are preserved in the more general case. Indeed, for the first time, this analysis provides a complete explanation of the advantages of least-squares oversampled collocation for boundary integral formulations of the Laplace equation on arbitrary smooth Jordan curves in 2D. Our theoretical results are shown to be in very good agreement with numerical experiments.

Total generalization variation (TGV) is a very powerful and important regularization for various inverse problems and computer vision tasks. In this paper, we proposed a semismooth Newton based augmented Lagrangian method to solve this problem. The augmented Lagrangian method (also called as method of multipliers) is widely used for lots of smooth or nonsmooth variational problems. However, its efficiency usually heavily depends on solving the coupled and nonlinear system together and simultaneously, which is very complicated and highly coupled for total generalization variation. With efficient primal-dual semismooth Newton methods for the complicated linear subproblems involving total generalized variation, we investigated a highly efficient and competitive algorithm compared to some efficient first-order method. With the analysis of the metric subregularities of the corresponding functions, we give both the global convergence and local linear convergence rate for the proposed augmented Lagrangian methods.

Functional constrained optimization is becoming more and more important in machine learning and operations research. Such problems have potential applications in risk-averse machine learning, semisupervised learning, and robust optimization among others. In this paper, we first present a novel Constraint Extrapolation (ConEx) method for solving convex functional constrained problems, which utilizes linear approximations of the constraint functions to define the extrapolation (or acceleration) step. We show that this method is a unified algorithm that achieves the best-known rate of convergence for solving different functional constrained convex composite problems, including convex or strongly convex, and smooth or nonsmooth problems with a stochastic objective and/or stochastic constraints. Many of these rates of convergence were in fact obtained for the first time in the literature. In addition, ConEx is a single-loop algorithm that does not involve any penalty subproblems. Contrary to existing primal-dual methods, it does not require the projection of Lagrangian multipliers into a (possibly unknown) bounded set. Second, for nonconvex functional constrained problems, we introduce a new proximal point method that transforms the initial nonconvex problem into a sequence of convex problems by adding quadratic terms to both the objective and constraints. Under a certain MFCQ-type assumption, we establish the convergence and rate of convergence of this method to KKT points when the convex subproblems are solved exactly or inexactly. For large-scale and stochastic problems, we present a more practical proximal point method in which the approximate solutions of the subproblems are computed by the aforementioned ConEx method. To the best of our knowledge, most of these convergence and complexity results of the proximal point method for nonconvex problems also seem to be new in the literature.

A syntactic model is presented for the specification of finite-state synchronous digital logic systems with complex input/output interfaces, which control the flow of data between opaque computational elements, and for the composition of compatible systems to form closed-loop systems with no inputs or outputs. This model improves upon similar existing models with a novel approach to specifying input and output ports in a way which is uniform and symmetric. An automaton model is also presented for encoding arbitrary computational processes, and an algorithm is presented to generate an automaton representation of a closed-loop system. Using the automaton model, the problem of timing-agnostic verification of closed-loop systems against a desired behavioural specification, encoded as the similarity of closed-loop systems in terms of the set of computations performed, is shown to be decidable. The relationship between the models and real-world implementations of systems is discussed.

We develop a novel procedure for estimating the optimizer of general convex stochastic optimization problems of the form $\min_{x\in\mathcal{X}} \mathbb{E}[F(x,\xi)]$, when the given data is a finite independent sample selected according to $\xi$. The procedure is based on a median-of-means tournament, and is the first procedure that exhibits the optimal statistical performance in heavy tailed situations: we recover the asymptotic rates dictated by the central limit theorem in a non-asymptotic manner once the sample size exceeds some explicitly computable threshold. Additionally, our results apply in the high-dimensional setup, as the threshold sample size exhibits the optimal dependence on the dimension (up to a logarithmic factor). The general setting allows us to recover recent results on multivariate mean estimation and linear regression in heavy-tailed situations and to prove the first sharp, non-asymptotic results for the portfolio optimization problem.

In this paper we present a method for the solution of $\ell_1$-regularized convex quadratic optimization problems. It is derived by suitably combining a proximal method of multipliers strategy with a semi-smooth Newton method. The resulting linear systems are solved using a Krylov-subspace method, accelerated by appropriate general-purpose preconditioners, which are shown to be optimal with respect to the proximal parameters. Practical efficiency is further improved by warm-starting the algorithm using a proximal alternating direction method of multipliers. We show that the method achieves global convergence under feasibility assumptions. Furthermore, under additional standard assumptions, the method can achieve global linear and local superlinear convergence. The effectiveness of the approach is numerically demonstrated on $L^1$-regularized PDE-constrained optimization problems.

The Kaczmarz method is an iterative numerical method for solving large and sparse rectangular systems of linear equations. Gearhart, Koshy and Tam have developed an acceleration technique for the Kaczmarz method that minimizes the distance to the desired solution in the direction of a full Kaczmarz step. The present paper generalizes this technique to an acceleration scheme that minimizes the Euclidean norm error over an affine subspace spanned by a number of previous iterates and one additional cycle of the Kaczmarz method. The key challenge is to find a formulation in which all parameters of the least-squares problem defining the unique minimizer are known, and to solve this problem efficiently. A numerical experiment demonstrates that the proposed affine search has the potential to clearly outperform the Kaczmarz and the randomized Kaczmarz methods with and without the Gearhart-Koshy/Tam line-search.

Learning a graph topology to reveal the underlying relationship between data entities plays an important role in various machine learning and data analysis tasks. Under the assumption that structured data vary smoothly over a graph, the problem can be formulated as a regularised convex optimisation over a positive semidefinite cone and solved by iterative algorithms. Classic methods require an explicit convex function to reflect generic topological priors, e.g. the $\ell_1$ penalty for enforcing sparsity, which limits the flexibility and expressiveness in learning rich topological structures. We propose to learn a mapping from node data to the graph structure based on the idea of learning to optimise (L2O). Specifically, our model first unrolls an iterative primal-dual splitting algorithm into a neural network. The key structural proximal projection is replaced with a variational autoencoder that refines the estimated graph with enhanced topological properties. The model is trained in an end-to-end fashion with pairs of node data and graph samples. Experiments on both synthetic and real-world data demonstrate that our model is more efficient than classic iterative algorithms in learning a graph with specific topological properties.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司