亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Organising an AI challenge does not end with the final event. The long-lasting impact also needs to be organised. This chapter covers the various activities after the challenge is formally finished. The target audience of different post-challenge activities is identified. The various outputs of the challenge are listed with the means to collect them. The main part of the chapter is a template for a typical post-challenge paper, including possible graphs as well as advice on how to turn the challenge into a long-lasting benchmark.

相關內容

人工智能雜志AI(Artificial Intelligence)是目前公認的發表該領域最新研究成果的主要國際論壇。該期刊歡迎有關AI廣泛方面的論文,這些論文構成了整個領域的進步,也歡迎介紹人工智能應用的論文,但重點應該放在新的和新穎的人工智能方法如何提高應用領域的性能,而不是介紹傳統人工智能方法的另一個應用。關于應用的論文應該描述一個原則性的解決方案,強調其新穎性,并對正在開發的人工智能技術進行深入的評估。 官網地址:

In Hyperparameter Optimization (HPO), only the hyperparameter configuration with the best performance is chosen after performing several trials, then, discarding the effort of training all the models with every hyperparameter configuration trial and performing an ensemble of all them. This ensemble consists of simply averaging the model predictions or weighting the models by a certain probability. Recently, other more sophisticated ensemble strategies, such as the Caruana method or the stacking strategy has been proposed. On the one hand, the Caruana method performs well in HPO ensemble, since it is not affected by the effects of multicollinearity, which is prevalent in HPO. It just computes the average over a subset of predictions with replacement. But it does not benefit from the generalization power of a learning process. On the other hand, stacking methods include a learning procedure since a meta-learner is required to perform the ensemble. Yet, one hardly finds advice about which meta-learner is adequate. Besides, some meta-learners may suffer from the effects of multicollinearity or need to be tuned to reduce them. This paper explores meta-learners for stacking ensemble in HPO, free of hyperparameter tuning, able to reduce the effects of multicollinearity and considering the ensemble learning process generalization power. At this respect, the boosting strategy seems promising as a stacking meta-learner. In fact, it completely removes the effects of multicollinearity. This paper also proposes an implicit regularization in the classical boosting method and a novel non-parametric stop criterion suitable only for boosting and specifically designed for HPO. The synergy between these two improvements over boosting exhibits competitive and promising predictive power performance compared to other existing meta-learners and ensemble approaches for HPO other than the stacking ensemble.

The progression of a single point in volleyball starts with a serve and then alternates between teams, each team allowed up to three contacts with the ball. Using charted data from the 2022 NCAA Division I women's volleyball season (4,147 matches, 600,000+ points, more than 5 million recorded contacts), we model the progression of a point as a Markov chain with the state space defined by the sequence of contacts in the current volley. We estimate the probability of each team winning the point, which changes on each contact. We attribute changes in point probability to the player(s) responsible for each contact, facilitating measurement of performance on the point scale for different skills. Traditional volleyball statistics do not allow apples-to-apples comparisons across skills, and they do not measure the impact of the performances on team success. For adversarial contacts (serve/receive and attack/block/dig), we estimate a hierarchical linear model for the outcome, with random effects for the players involved; and we adjust performance for strength of schedule not only on the conference/team level but on the individual player level. We can use the results to answer practical questions for volleyball coaches.

Latitude on the choice of initialisation is a shared feature between one-step extended state-space and multi-step methods. The paper focuses on lattice Boltzmann schemes, which can be interpreted as examples of both previous categories of numerical schemes. We propose a modified equation analysis of the initialisation schemes for lattice Boltzmann methods, determined by the choice of initial data. These modified equations provide guidelines to devise and analyze the initialisation in terms of order of consistency with respect to the target Cauchy problem and time smoothness of the numerical solution. In detail, the larger the number of matched terms between modified equations for initialisation and bulk methods, the smoother the obtained numerical solution. This is particularly manifest for numerical dissipation. Starting from the constraints to achieve time smoothness, which can quickly become prohibitive for they have to take the parasitic modes into consideration, we explain how the distinct lack of observability for certain lattice Boltzmann schemes -- seen as dynamical systems on a commutative ring -- can yield rather simple conditions and be easily studied as far as their initialisation is concerned. This comes from the reduced number of initialisation schemes at the fully discrete level. These theoretical results are successfully assessed on several lattice Boltzmann methods.

The Shapley value equals a player's contribution to the potential of a game. The potential is a most natural one-number summary of a game, which can be computed as the expected accumulated worth of a random partition of the players. This computation integrates the coalition formation of all players and readily extends to games with externalities. We investigate those potential functions for games with externalities that can be computed this way. It turns out that the potential that corresponds to the MPW solution introduced by Macho-Stadler et al. (2007, J. Econ. Theory 135, 339-356), is unique in the following sense. It is obtained as a the expected accumulated worth of a random partition, it generalizes the potential for games without externalities, and it induces a solution that satisfies the null player property even in the presence of externalities.

The emergence of industrial-scale speech recognition (ASR) models such as Whisper and USM, trained on 1M hours of weakly labelled and 12M hours of audio only proprietary data respectively, has led to a stronger need for large scale public ASR corpora and competitive open source pipelines. Unlike the said models, large language models are typically based on Transformer decoders, and it remains unclear if decoder-only models trained on public data alone can deliver competitive performance. In this work, we investigate factors such as choice of training datasets and modeling components necessary for obtaining the best performance using public English ASR corpora alone. Our Decoder-Only Transformer for ASR (DOTA) model comprehensively outperforms the encoder-decoder open source replication of Whisper (OWSM) on nearly all English ASR benchmarks and outperforms Whisper large-v3 on 7 out of 15 test sets. We release our codebase and model checkpoints under permissive license.

Analytically, finding the origins of cooperative behavior in infinite-player games is an exciting topic of current interest. Previously, cooperative behavior has been studied by considering game magnetization and individual player's average payoff as indicators. This paper shows that game susceptibility, correlation, and payoff capacity can aid in understanding cooperative behavior in social dilemmas in the thermodynamic limit. In this paper, we compare three analytical methods, i.e., Nash equilibrium mapping (NEM), Darwinian selection (DS), and Aggregate selection (AS), with a numerical-based method (ABM) via the game susceptibility, correlation, and payoff capacity as indicators of cooperative behavior. AS and DS fail compared to NEM and ABM by giving incorrect results for the indicators in question. The results obtained via NEM and ABM are in good agreement for all three indicators in question, for both Hawk-Dove and the Public goods games. After comparing the results obtained for all five indicators, we see that individual players' average payoff and payoff capacity are the best indicators to study cooperative behavior among players in the thermodynamic limit. This paper finds that NEM and ABM, along with the selected indicators, offer valuable insights into cooperative behavior in infinite-player games, contributing to understanding social dilemmas in the thermodynamic limit.

We revisit a self-supervised method that segments unlabelled speech into word-like segments. We start from the two-stage duration-penalised dynamic programming method that performs zero-resource segmentation without learning an explicit lexicon. In the first acoustic unit discovery stage, we replace contrastive predictive coding features with HuBERT. After word segmentation in the second stage, we get an acoustic word embedding for each segment by averaging HuBERT features. These embeddings are clustered using K-means to get a lexicon. The result is good full-coverage segmentation with a lexicon that achieves state-of-the-art performance on the ZeroSpeech benchmarks.

Message passing Graph Neural Networks (GNNs) are known to be limited in expressive power by the 1-WL color-refinement test for graph isomorphism. Other more expressive models either are computationally expensive or need preprocessing to extract structural features from the graph. In this work, we propose to make GNNs universal by guiding the learning process with exact isomorphism solver techniques which operate on the paradigm of Individualization and Refinement (IR), a method to artificially introduce asymmetry and further refine the coloring when 1-WL stops. Isomorphism solvers generate a search tree of colorings whose leaves uniquely identify the graph. However, the tree grows exponentially large and needs hand-crafted pruning techniques which are not desirable from a learning perspective. We take a probabilistic view and approximate the search tree of colorings (i.e. embeddings) by sampling multiple paths from root to leaves of the search tree. To learn more discriminative representations, we guide the sampling process with particle filter updates, a principled approach for sequential state estimation. Our algorithm is end-to-end differentiable, can be applied with any GNN as backbone and learns richer graph representations with only linear increase in runtime. Experimental evaluation shows that our approach consistently outperforms leading GNN models on both synthetic benchmarks for isomorphism detection as well as real-world datasets.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

Training a deep architecture using a ranking loss has become standard for the person re-identification task. Increasingly, these deep architectures include additional components that leverage part detections, attribute predictions, pose estimators and other auxiliary information, in order to more effectively localize and align discriminative image regions. In this paper we adopt a different approach and carefully design each component of a simple deep architecture and, critically, the strategy for training it effectively for person re-identification. We extensively evaluate each design choice, leading to a list of good practices for person re-identification. By following these practices, our approach outperforms the state of the art, including more complex methods with auxiliary components, by large margins on four benchmark datasets. We also provide a qualitative analysis of our trained representation which indicates that, while compact, it is able to capture information from localized and discriminative regions, in a manner akin to an implicit attention mechanism.

北京阿比特科技有限公司