亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sequential labeling is a task predicting labels for each token in a sequence, such as Named Entity Recognition (NER). NER tasks aim to extract entities and predict their labels given a text, which is important in information extraction. Although previous works have shown great progress in improving NER performance, uncertainty estimation on NER (UE-NER) is still underexplored but essential. This work focuses on UE-NER, which aims to estimate uncertainty scores for the NER predictions. Previous uncertainty estimation models often overlook two unique characteristics of NER: the connection between entities (i.e., one entity embedding is learned based on the other ones) and wrong span cases in the entity extraction subtask. Therefore, we propose a Sequential Labeling Posterior Network (SLPN) to estimate uncertainty scores for the extracted entities, considering uncertainty transmitted from other tokens. Moreover, we have defined an evaluation strategy to address the specificity of wrong-span cases. Our SLPN has achieved significant improvements on two datasets, such as a 5.54-point improvement in AUPR on the MIT-Restaurant dataset.

相關內容

This paper presents Contrastive Transformer, a contrastive learning scheme using the Transformer innate patches. Contrastive Transformer enables existing contrastive learning techniques, often used for image classification, to benefit dense downstream prediction tasks such as semantic segmentation. The scheme performs supervised patch-level contrastive learning, selecting the patches based on the ground truth mask, subsequently used for hard-negative and hard-positive sampling. The scheme applies to all vision-transformer architectures, is easy to implement, and introduces minimal additional memory footprint. Additionally, the scheme removes the need for huge batch sizes, as each patch is treated as an image. We apply and test Contrastive Transformer for the case of aerial image segmentation, known for low-resolution data, large class imbalance, and similar semantic classes. We perform extensive experiments to show the efficacy of the Contrastive Transformer scheme on the ISPRS Potsdam aerial image segmentation dataset. Additionally, we show the generalizability of our scheme by applying it to multiple inherently different Transformer architectures. Ultimately, the results show a consistent increase in mean IoU across all classes.

Recently, there has been a growing interest in learning and explaining causal effects within Neural Network (NN) models. By virtue of NN architectures, previous approaches consider only direct and total causal effects assuming independence among input variables. We view an NN as a structural causal model (SCM) and extend our focus to include indirect causal effects by introducing feedforward connections among input neurons. We propose an ante-hoc method that captures and maintains direct, indirect, and total causal effects during NN model training. We also propose an algorithm for quantifying learned causal effects in an NN model and efficient approximation strategies for quantifying causal effects in high-dimensional data. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the causal effects learned by our ante-hoc method better approximate the ground truth effects compared to existing methods.

As IoT devices become widely, it is crucial to protect them from malicious intrusions. However, the data scarcity of IoT limits the applicability of traditional intrusion detection methods, which are highly data-dependent. To address this, in this paper we propose the Open-Set Dandelion Network (OSDN) based on unsupervised heterogeneous domain adaptation in an open-set manner. The OSDN model performs intrusion knowledge transfer from the knowledge-rich source network intrusion domain to facilitate more accurate intrusion detection for the data-scarce target IoT intrusion domain. Under the open-set setting, it can also detect newly-emerged target domain intrusions that are not observed in the source domain. To achieve this, the OSDN model forms the source domain into a dandelion-like feature space in which each intrusion category is compactly grouped and different intrusion categories are separated, i.e., simultaneously emphasising inter-category separability and intra-category compactness. The dandelion-based target membership mechanism then forms the target dandelion. Then, the dandelion angular separation mechanism achieves better inter-category separability, and the dandelion embedding alignment mechanism further aligns both dandelions in a finer manner. To promote intra-category compactness, the discriminating sampled dandelion mechanism is used. Assisted by the intrusion classifier trained using both known and generated unknown intrusion knowledge, a semantic dandelion correction mechanism emphasises easily-confused categories and guides better inter-category separability. Holistically, these mechanisms form the OSDN model that effectively performs intrusion knowledge transfer to benefit IoT intrusion detection. Comprehensive experiments on several intrusion datasets verify the effectiveness of the OSDN model, outperforming three state-of-the-art baseline methods by 16.9%.

We propose a novel set of Poisson Cluster Process (PCP) models to detect Ultra-Diffuse Galaxies (UDGs), a class of extremely faint, enigmatic galaxies of substantial interest in modern astrophysics. We model the unobserved UDG locations as parent points in a PCP, and infer their positions based on the observed spatial point patterns of their old star cluster systems. Many UDGs have somewhere from a few to hundreds of these old star clusters, which we treat as offspring points in our models. We also present a new framework to construct a marked PCP model using the marks of star clusters. The marked PCP model may enhance the detection of UDGs and offers broad applicability to problems in other disciplines. To assess the overall model performance, we design an innovative assessment tool for spatial prediction problems where only point-referenced ground truth is available, overcoming the limitation of standard ROC analyses where spatial Boolean reference maps are required. We construct a bespoke blocked Gibbs adaptive spatial birth-death-move MCMC algorithm to infer the locations of UDGs using real data from a \textit{Hubble Space Telescope} imaging survey. Based on our performance assessment tool, our novel models significantly outperform existing approaches using the Log-Gaussian Cox Process. We also obtained preliminary evidence that the marked PCP model improves UDG detection performance compared to the model without marks. Furthermore, we find evidence of a potential new ``dark galaxy'' that was not detected by previous methods.

Training Generative Adversarial Networks (GANs) remains a challenging problem. The discriminator trains the generator by learning the distribution of real/generated data. However, the distribution of generated data changes throughout the training process, which is difficult for the discriminator to learn. In this paper, we propose a novel method for GANs from the viewpoint of online continual learning. We observe that the discriminator model, trained on historically generated data, often slows down its adaptation to the changes in the new arrival generated data, which accordingly decreases the quality of generated results. By treating the generated data in training as a stream, we propose to detect whether the discriminator slows down the learning of new knowledge in generated data. Therefore, we can explicitly enforce the discriminator to learn new knowledge fast. Particularly, we propose a new discriminator, which automatically detects its retardation and then dynamically masks its features, such that the discriminator can adaptively learn the temporally-vary distribution of generated data. Experimental results show our method outperforms the state-of-the-art approaches.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

When learning tasks over time, artificial neural networks suffer from a problem known as Catastrophic Forgetting (CF). This happens when the weights of a network are overwritten during the training of a new task causing forgetting of old information. To address this issue, we propose MetA Reusable Knowledge or MARK, a new method that fosters weight reusability instead of overwriting when learning a new task. Specifically, MARK keeps a set of shared weights among tasks. We envision these shared weights as a common Knowledge Base (KB) that is not only used to learn new tasks, but also enriched with new knowledge as the model learns new tasks. Key components behind MARK are two-fold. On the one hand, a metalearning approach provides the key mechanism to incrementally enrich the KB with new knowledge and to foster weight reusability among tasks. On the other hand, a set of trainable masks provides the key mechanism to selectively choose from the KB relevant weights to solve each task. By using MARK, we achieve state of the art results in several popular benchmarks, surpassing the best performing methods in terms of average accuracy by over 10% on the 20-Split-MiniImageNet dataset, while achieving almost zero forgetfulness using 55% of the number of parameters. Furthermore, an ablation study provides evidence that, indeed, MARK is learning reusable knowledge that is selectively used by each task.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

北京阿比特科技有限公司