Simulation is a crucial step in ensuring accurate, efficient, and realistic Connected and Autonomous Vehicles (CAVs) testing and validation. As the adoption of CAV accelerates, the integration of real-world data into simulation environments becomes increasingly critical. Among various technologies utilized by CAVs, Vehicle-to-Everything (V2X) communication plays a crucial role in ensuring a seamless transmission of information between CAVs, infrastructure, and other road users. However, most existing studies have focused on developing and testing communication protocols, resource allocation strategies, and data dissemination techniques in V2X. There is a gap where real-world V2X data is integrated into simulations to generate diverse and high-fidelity traffic scenarios. To fulfill this research gap, we leverage real-world Signal Phase and Timing (SPaT) data from Roadside Units (RSUs) to enhance the fidelity of CAV simulations. Moreover, we developed an algorithm that enables Autonomous Vehicles (AVs) to respond dynamically to real-time traffic signal data, simulating realistic V2X communication scenarios. Such high-fidelity simulation environments can generate multimodal data, including trajectory, semantic camera, depth camera, and bird's eye view data for various traffic scenarios. The generated scenarios and data provide invaluable insights into AVs' interactions with traffic infrastructure and other road users. This work aims to bridge the gap between theoretical research and practical deployment of CAVs, facilitating the development of smarter and safer transportation systems.
An adversarial example is a modified input image designed to cause a Machine Learning (ML) model to make a mistake; these perturbations are often invisible or subtle to human observers and highlight vulnerabilities in a model's ability to generalize from its training data. Several adversarial attacks can create such examples, each with a different perspective, effectiveness, and perceptibility of changes. Conversely, defending against such adversarial attacks improves the robustness of ML models in image processing and other domains of deep learning. Most defence mechanisms require either a level of model awareness, changes to the model, or access to a comprehensive set of adversarial examples during training, which is impractical. Another option is to use an auxiliary model in a preprocessing manner without changing the primary model. This study presents a practical and effective solution -- using predictive coding networks (PCnets) as an auxiliary step for adversarial defence. By seamlessly integrating PCnets into feed-forward networks as a preprocessing step, we substantially bolster resilience to adversarial perturbations. Our experiments on MNIST and CIFAR10 demonstrate the remarkable effectiveness of PCnets in mitigating adversarial examples with about 82% and 65% improvements in robustness, respectively. The PCnet, trained on a small subset of the dataset, leverages its generative nature to effectively counter adversarial efforts, reverting perturbed images closer to their original forms. This innovative approach holds promise for enhancing the security and reliability of neural network classifiers in the face of the escalating threat of adversarial attacks.
The safe and effective deployment of Large Language Models (LLMs) involves a critical step called alignment, which ensures that the model's responses are in accordance with human preferences. Prevalent alignment techniques, such as DPO, PPO and their variants, align LLMs by changing the pre-trained model weights during a phase called post-training. While predominant, these post-training methods add substantial complexity before LLMs can be deployed. Inference-time alignment methods avoid the complex post-training step and instead bias the generation towards responses that are aligned with human preferences. The best-known inference-time alignment method, called Best-of-N, is as effective as the state-of-the-art post-training procedures. Unfortunately, Best-of-N requires vastly more resources at inference time than standard decoding strategies, which makes it computationally not viable. In this work, we introduce Speculative Rejection, a computationally-viable inference-time alignment algorithm. It generates high-scoring responses according to a given reward model, like Best-of-N does, while being between 16 to 32 times more computationally efficient.
Federated Learning (FL) is a form of distributed learning that allows multiple institutions or clients to collaboratively learn a global model to solve a task. This allows the model to utilize the information from every institute while preserving data privacy. However, recent studies show that the promise of protecting the privacy of data is not upheld by existing methods and that it is possible to recreate the training data from the different institutions. This is done by utilizing gradients transferred between the clients and the global server during training or by knowing the model architecture at the client end. In this paper, we propose a federated learning framework for semantic segmentation without knowing the model architecture nor transferring gradients between the client and the server, thus enabling better privacy preservation. We propose BlackFed - a black-box adaptation of neural networks that utilizes zero order optimization (ZOO) to update the client model weights and first order optimization (FOO) to update the server weights. We evaluate our approach on several computer vision and medical imaging datasets to demonstrate its effectiveness. To the best of our knowledge, this work is one of the first works in employing federated learning for segmentation, devoid of gradients or model information exchange. Code: //github.com/JayParanjape/blackfed/tree/master
The Conditional Gaussian Nonlinear System (CGNS) is a broad class of nonlinear stochastic dynamical systems. Given the trajectories for a subset of state variables, the remaining follow a Gaussian distribution. Despite the conditionally linear structure, the CGNS exhibits strong nonlinearity, thus capturing many non-Gaussian characteristics observed in nature through its joint and marginal distributions. Desirably, it enjoys closed analytic formulae for the time evolution of its conditional Gaussian statistics, which facilitate the study of data assimilation and other related topics. In this paper, we develop a martingale-free approach to improve the understanding of CGNSs. This methodology provides a tractable approach to proving the time evolution of the conditional statistics by deriving results through time discretization schemes, with the continuous-time regime obtained via a formal limiting process as the discretization time-step vanishes. This discretized approach further allows for developing analytic formulae for optimal posterior sampling of unobserved state variables with correlated noise. These tools are particularly valuable for studying extreme events and intermittency and apply to high-dimensional systems. Moreover, the approach improves the understanding of different sampling methods in characterizing uncertainty. The effectiveness of the framework is demonstrated through a physics-constrained, triad-interaction climate model with cubic nonlinearity and state-dependent cross-interacting noise.
Goal hijacking is a type of adversarial attack on Large Language Models (LLMs) where the objective is to manipulate the model into producing a specific, predetermined output, regardless of the user's original input. In goal hijacking, an attacker typically appends a carefully crafted malicious suffix to the user's prompt, which coerces the model into ignoring the user's original input and generating the target response. In this paper, we introduce a novel goal hijacking attack method called Pseudo-Conversation Injection, which leverages the weaknesses of LLMs in role identification within conversation contexts. Specifically, we construct the suffix by fabricating responses from the LLM to the user's initial prompt, followed by a prompt for a malicious new task. This leads the model to perceive the initial prompt and fabricated response as a completed conversation, thereby executing the new, falsified prompt. Following this approach, we propose three Pseudo-Conversation construction strategies: Targeted Pseudo-Conversation, Universal Pseudo-Conversation, and Robust Pseudo-Conversation. These strategies are designed to achieve effective goal hijacking across various scenarios. Our experiments, conducted on two mainstream LLM platforms including ChatGPT and Qwen, demonstrate that our proposed method significantly outperforms existing approaches in terms of attack effectiveness.
Online learning methods, like the seminal Passive-Aggressive (PA) classifier, are still highly effective for high-dimensional streaming data, out-of-core processing, and other throughput-sensitive applications. Many such algorithms rely on fast adaptation to individual errors as a key to their convergence. While such algorithms enjoy low theoretical regret, in real-world deployment they can be sensitive to individual outliers that cause the algorithm to over-correct. When such outliers occur at the end of the data stream, this can cause the final solution to have unexpectedly low accuracy. We design a weighted reservoir sampling (WRS) approach to obtain a stable ensemble model from the sequence of solutions without requiring additional passes over the data, hold-out sets, or a growing amount of memory. Our key insight is that good solutions tend to be error-free for more iterations than bad solutions, and thus, the number of passive rounds provides an estimate of a solution's relative quality. Our reservoir thus contains $K$ previous intermediate weight vectors with high survival times. We demonstrate our WRS approach on the Passive-Aggressive Classifier (PAC) and First-Order Sparse Online Learning (FSOL), where our method consistently and significantly outperforms the unmodified approach. We show that the risk of the ensemble classifier is bounded with respect to the regret of the underlying online learning method.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Representation learning on a knowledge graph (KG) is to embed entities and relations of a KG into low-dimensional continuous vector spaces. Early KG embedding methods only pay attention to structured information encoded in triples, which would cause limited performance due to the structure sparseness of KGs. Some recent attempts consider paths information to expand the structure of KGs but lack explainability in the process of obtaining the path representations. In this paper, we propose a novel Rule and Path-based Joint Embedding (RPJE) scheme, which takes full advantage of the explainability and accuracy of logic rules, the generalization of KG embedding as well as the supplementary semantic structure of paths. Specifically, logic rules of different lengths (the number of relations in rule body) in the form of Horn clauses are first mined from the KG and elaborately encoded for representation learning. Then, the rules of length 2 are applied to compose paths accurately while the rules of length 1 are explicitly employed to create semantic associations among relations and constrain relation embeddings. Besides, the confidence level of each rule is also considered in optimization to guarantee the availability of applying the rule to representation learning. Extensive experimental results illustrate that RPJE outperforms other state-of-the-art baselines on KG completion task, which also demonstrate the superiority of utilizing logic rules as well as paths for improving the accuracy and explainability of representation learning.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.