亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a study on how cooperation versus non-cooperation, and centralization versus distribution impact the performance of a traffic game of autonomous vehicles. A model using a particle-based, Lagrange representation, is developed, instead of a Eulerian, flow-based one, usual in routing problems of the game-theoretical approach. This choice allows representation of phenomena such as fuel exhaustion, vehicle collision, and wave propagation. The elements necessary to represent interactions in a multi-agent transportation system are defined, including a distributed, priority-based resource allocation protocol, where resources are nodes and links in a spatial network and individual routing strategies are performed. A fuel consumption dynamics is developed in order to account for energy cost and vehicles having limited range. The analysis shows that only the scenarios with cooperative resource allocation can achieve optimal values of either collective cost or equity coefficient, corresponding respectively to the centralized and to the distributed cases.

相關內容

We consider distributed online min-max resource allocation with a set of parallel agents and a parameter server. Our goal is to minimize the pointwise maximum over a set of time-varying convex and decreasing cost functions, without a priori information about these functions. We propose a novel online algorithm, termed Distributed Online resource Re-Allocation (DORA), where non-stragglers learn to relinquish resource and share resource with stragglers. A notable feature of DORA is that it does not require gradient calculation or projection operation, unlike most existing online optimization strategies. This allows it to substantially reduce the computation overhead in large-scale and distributed networks. We show that the dynamic regret of the proposed algorithm is upper bounded by $O\left(T^{\frac{3}{4}}(1+P_T)^{\frac{1}{4}}\right)$, where $T$ is the total number of rounds and $P_T$ is the path-length of the instantaneous minimizers. We further consider an application to the bandwidth allocation problem in distributed online machine learning. Our numerical study demonstrates the efficacy of the proposed solution and its performance advantage over gradient- and/or projection-based resource allocation algorithms in reducing wall-clock time.

We consider a standard distributed optimisation setting where $N$ machines, each holding a $d$-dimensional function $f_i$, aim to jointly minimise the sum of the functions $\sum_{i = 1}^N f_i (x)$. This problem arises naturally in large-scale distributed optimisation, where a standard solution is to apply variants of (stochastic) gradient descent. We focus on the communication complexity of this problem: our main result provides the first fully unconditional bounds on total number of bits which need to be sent and received by the $N$ machines to solve this problem under point-to-point communication, within a given error-tolerance. Specifically, we show that $\Omega( Nd \log d / N\varepsilon)$ total bits need to be communicated between the machines to find an additive $\epsilon$-approximation to the minimum of $\sum_{i = 1}^N f_i (x)$. The result holds for both deterministic and randomised algorithms, and, importantly, requires no assumptions on the algorithm structure. The lower bound is tight under certain restrictions on parameter values, and is matched within constant factors for quadratic objectives by a new variant of quantised gradient descent, which we describe and analyse. Our results bring over tools from communication complexity to distributed optimisation, which has potential for further applications.

Coded computation techniques provide robustness against straggling workers in distributed computing. However, most of the existing schemes require exact provisioning of the straggling behaviour and ignore the computations carried out by straggling workers. Moreover, these schemes are typically designed to recover the desired computation results accurately, while in many machine learning and iterative optimization algorithms, faster approximate solutions are known to result in an improvement in the overall convergence time. In this paper, we first introduce a novel coded matrix-vector multiplication scheme, called coded computation with partial recovery (CCPR), which benefits from the advantages of both coded and uncoded computation schemes, and reduces both the computation time and the decoding complexity by allowing a trade-off between the accuracy and the speed of computation. We then extend this approach to distributed implementation of more general computation tasks by proposing a coded communication scheme with partial recovery, where the results of subtasks computed by the workers are coded before being communicated. Numerical simulations on a large linear regression task confirm the benefits of the proposed distributed computation scheme with partial recovery in terms of the trade-off between the computation accuracy and latency.

Heavy-duty mobile machines (HDMMs) are a wide range of machinery used in diverse and critical application areas which are currently facing several issues like skilled labor shortage, poor safety records, and harsh work environments. Consequently, efforts are underway to increase automation in HDMMs for increased productivity and safety, eventually transitioning to operator-less autonomous HDMMs to address skilled labor shortages. However, HDMM are complex machines requiring continuous physical and cognitive inputs from human-operators. Thus, developing autonomous HDMM is a huge challenge, with current research and developments being performed in several independent research domains. Through this study, we use the bounded rationality concept to propose multidisciplinary collaborations for new autonomous HDMMs and apply the transaction cost economics framework to suggest future implications in the HDMM industry. Furthermore, we introduce a conceptual understanding of collaborations in the autonomous HDMM as a unified approach, while highlighting the practical implications and challenges of the complex nature of such multidisciplinary collaborations. The collaborative challenges and potentials are mapped out between the following topics: mechanical systems, AI methods, software systems, sensors, connectivity, simulations and process optimization, business cases, organization theories, and finally, regulatory frameworks.

This paper presents a noval method that generates optimal trajectories for autonomous vehicles for in-lane driving scenarios. The method computes a trajectory using a two-phase optimization procedure. In the first phase, the optimization procedure generates a close-form driving guide line with differetiable curvatures. In the second phase, the procedure takes the driving guide line as input, and outputs dynamically feasible, jerk and time optimal trajectories for vehicles driving along the guide line. This method is especially useful for generating trajectories at curvy road where the vehicles need to apply frequent accelerations and decelerations to accommodate centripetal acceleration limits.

This work examines adaptive distributed learning strategies designed to operate under communication constraints. We consider a network of agents that must solve an online optimization problem from continual observation of streaming data. The agents implement a distributed cooperative strategy where each agent is allowed to perform local exchange of information with its neighbors. In order to cope with communication constraints, the exchanged information must be unavoidably compressed. We propose a diffusion strategy nicknamed as ACTC (Adapt-Compress-Then-Combine), which relies on the following steps: i) an adaptation step where each agent performs an individual stochastic-gradient update with constant step-size; ii) a compression step that leverages a recently introduced class of stochastic compression operators; and iii) a combination step where each agent combines the compressed updates received from its neighbors. The distinguishing elements of this work are as follows. First, we focus on adaptive strategies, where constant (as opposed to diminishing) step-sizes are critical to respond in real time to nonstationary variations. Second, we consider the general class of directed graphs and left-stochastic combination policies, which allow us to enhance the interplay between topology and learning. Third, in contrast with related works that assume strong convexity for all individual agents' cost functions, we require strong convexity only at a network level, a condition satisfied even if a single agent has a strongly-convex cost and the remaining agents have non-convex costs. Fourth, we focus on a diffusion (as opposed to consensus) strategy. Under the demanding setting of compressed information, we establish that the ACTC iterates fluctuate around the desired optimizer, achieving remarkable savings in terms of bits exchanged between neighboring agents.

The essence of distributed computing systems is how to schedule incoming requests and how to allocate all computing nodes to minimize both time and computation costs. In this paper, we propose a cost-aware optimal scheduling and allocation strategy for distributed computing systems while minimizing the cost function including response time and service cost. First, based on the proposed cost function, we derive the optimal request scheduling policy and the optimal resource allocation policy synchronously. Second, considering the effects of incoming requests on the scheduling policy, the additive increase multiplicative decrease (AIMD) mechanism is implemented to model the relation between the request arrival and scheduling. In particular, the AIMD parameters can be designed such that the derived optimal strategy is still valid. Finally, a numerical example is presented to illustrate the derived results.

The increasing number of wireless devices operating in unlicensed spectrum motivates the development of intelligent adaptive approaches to spectrum access that go beyond traditional carrier sensing. We develop a novel distributed implementation of a policy gradient method known as Proximal Policy Optimization modelled on a two stage Markov decision process that enables such an intelligent approach, and still achieves decentralized contention-based medium access. In each time slot, a base station (BS) uses information from spectrum sensing and reception quality to autonomously decide whether or not to transmit on a given resource, with the goal of maximizing proportional fairness network-wide. Empirically, we find the proportional fairness reward accumulated by the policy gradient approach to be significantly higher than even a genie-aided adaptive energy detection threshold. This is further validated by the improved sum and maximum user throughputs achieved by our approach.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

In this paper, an interference-aware path planning scheme for a network of cellular-connected unmanned aerial vehicles (UAVs) is proposed. In particular, each UAV aims at achieving a tradeoff between maximizing energy efficiency and minimizing both wireless latency and the interference level caused on the ground network along its path. The problem is cast as a dynamic game among UAVs. To solve this game, a deep reinforcement learning algorithm, based on echo state network (ESN) cells, is proposed. The introduced deep ESN architecture is trained to allow each UAV to map each observation of the network state to an action, with the goal of minimizing a sequence of time-dependent utility functions. Each UAV uses ESN to learn its optimal path, transmission power level, and cell association vector at different locations along its path. The proposed algorithm is shown to reach a subgame perfect Nash equilibrium (SPNE) upon convergence. Moreover, an upper and lower bound for the altitude of the UAVs is derived thus reducing the computational complexity of the proposed algorithm. Simulation results show that the proposed scheme achieves better wireless latency per UAV and rate per ground user (UE) while requiring a number of steps that is comparable to a heuristic baseline that considers moving via the shortest distance towards the corresponding destinations. The results also show that the optimal altitude of the UAVs varies based on the ground network density and the UE data rate requirements and plays a vital role in minimizing the interference level on the ground UEs as well as the wireless transmission delay of the UAV.

北京阿比特科技有限公司