Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging task. Mainstream approaches follow a multi-stage framework and suffer from high training costs. In this paper, we explore the potential of Contrastive Language-Image Pre-training models (CLIP) to localize different categories with only image-level labels and without further training. To efficiently generate high-quality segmentation masks from CLIP, we propose a novel WSSS framework called CLIP-ES. Our framework improves all three stages of WSSS with special designs for CLIP: 1) We introduce the softmax function into GradCAM and exploit the zero-shot ability of CLIP to suppress the confusion caused by non-target classes and backgrounds. Meanwhile, to take full advantage of CLIP, we re-explore text inputs under the WSSS setting and customize two text-driven strategies: sharpness-based prompt selection and synonym fusion. 2) To simplify the stage of CAM refinement, we propose a real-time class-aware attention-based affinity (CAA) module based on the inherent multi-head self-attention (MHSA) in CLIP-ViTs. 3) When training the final segmentation model with the masks generated by CLIP, we introduced a confidence-guided loss (CGL) focus on confident regions. Our CLIP-ES achieves SOTA performance on Pascal VOC 2012 and MS COCO 2014 while only taking 10% time of previous methods for the pseudo mask generation. Code is available at //github.com/linyq2117/CLIP-ES.
This study introduces an efficacious approach, Masked Collaborative Contrast (MCC), to emphasize semantic regions in weakly supervised semantic segmentation. MCC adroitly incorporates concepts from masked image modeling and contrastive learning to devise Transformer blocks that induce keys to contract towards semantically pertinent regions. Unlike prevalent techniques that directly eradicate patch regions in the input image when generating masks, we scrutinize the neighborhood relations of patch tokens by exploring masks considering keys on the affinity matrix. Moreover, we generate positive and negative samples in contrastive learning by utilizing the masked local output and contrasting it with the global output. Elaborate experiments on commonly employed datasets evidences that the proposed MCC mechanism effectively aligns global and local perspectives within the image, attaining impressive performance.
Federated recommendation systems employ federated learning techniques to safeguard user privacy by transmitting model parameters instead of raw user data between user devices and the central server. Nevertheless, the current federated recommender system faces challenges such as heterogeneity and personalization, model performance degradation, and communication bottleneck. Previous studies have attempted to address these issues, but none have been able to solve them simultaneously. In this paper, we propose a novel framework, named PerFedRec++, to enhance the personalized federated recommendation with self-supervised pre-training. Specifically, we utilize the privacy-preserving mechanism of federated recommender systems to generate two augmented graph views, which are used as contrastive tasks in self-supervised graph learning to pre-train the model. Pre-training enhances the performance of federated models by improving the uniformity of representation learning. Also, by providing a better initial state for federated training, pre-training makes the overall training converge faster, thus alleviating the heavy communication burden. We then construct a collaborative graph to learn the client representation through a federated graph neural network. Based on these learned representations, we cluster users into different user groups and learn personalized models for each cluster. Each user learns a personalized model by combining the global federated model, the cluster-level federated model, and its own fine-tuned local model. Experiments on three real-world datasets show that our proposed method achieves superior performance over existing methods.
We develop the first active learning method in the predict-then-optimize framework. Specifically, we develop a learning method that sequentially decides whether to request the "labels" of feature samples from an unlabeled data stream, where the labels correspond to the parameters of an optimization model for decision-making. Our active learning method is the first to be directly informed by the decision error induced by the predicted parameters, which is referred to as the Smart Predict-then-Optimize (SPO) loss. Motivated by the structure of the SPO loss, our algorithm adopts a margin-based criterion utilizing the concept of distance to degeneracy and minimizes a tractable surrogate of the SPO loss on the collected data. In particular, we develop an efficient active learning algorithm with both hard and soft rejection variants, each with theoretical excess risk (i.e., generalization) guarantees. We further derive bounds on the label complexity, which refers to the number of samples whose labels are acquired to achieve a desired small level of SPO risk. Under some natural low-noise conditions, we show that these bounds can be better than the naive supervised learning approach that labels all samples. Furthermore, when using the SPO+ loss function, a specialized surrogate of the SPO loss, we derive a significantly smaller label complexity under separability conditions. We also present numerical evidence showing the practical value of our proposed algorithms in the settings of personalized pricing and the shortest path problem.
Masked autoencoders (MAEs) have displayed significant potential in the classification and semantic segmentation of medical images in the last year. Due to the high similarity of human tissues, even slight changes in medical images may represent diseased tissues, necessitating fine-grained inspection to pinpoint diseased tissues. The random masking strategy of MAEs is likely to result in areas of lesions being overlooked by the model. At the same time, inconsistencies between the pre-training and fine-tuning phases impede the performance and efficiency of MAE in medical image classification. To address these issues, we propose a medical supervised masked autoencoder (MSMAE) in this paper. In the pre-training phase, MSMAE precisely masks medical images via the attention maps obtained from supervised training, contributing to the representation learning of human tissue in the lesion area. During the fine-tuning phase, MSMAE is also driven by attention to the accurate masking of medical images. This improves the computational efficiency of the MSMAE while increasing the difficulty of fine-tuning, which indirectly improves the quality of MSMAE medical diagnosis. Extensive experiments demonstrate that MSMAE achieves state-of-the-art performance in case with three official medical datasets for various diseases. Meanwhile, transfer learning for MSMAE also demonstrates the great potential of our approach for medical semantic segmentation tasks. Moreover, the MSMAE accelerates the inference time in the fine-tuning phase by 11.2% and reduces the number of floating-point operations (FLOPs) by 74.08% compared to a traditional MAE.
Weakly Supervised Semantic Segmentation (WSSS) with only image-level supervision has garnered increasing attention due to its low annotation cost compared to pixel-level annotation. Most existing methods rely on Class Activation Maps (CAM) to generate pixel-level pseudo labels for supervised training. However, it is well known that CAM often suffers from partial activation -- activating the most discriminative part instead of the entire object area, and false activation -- unnecessarily activating the background around the object. In this study, we introduce a simple yet effective approach to address these limitations by harnessing the recently released Segment Anything Model (SAM) to generate higher-quality pseudo labels with CAM. SAM is a segmentation foundation model that demonstrates strong zero-shot ability in partitioning images into segments but lacks semantic labels for these regions. To circumvent this, we employ pseudo labels for a specific class as the signal to select the most relevant masks and label them to generate the refined pseudo labels for this class. The segments generated by SAM are highly precise, leading to substantial improvements in partial and false activation. Moreover, existing post-processing modules for producing pseudo labels, such as AffinityNet, are often computationally heavy, with a significantly long training time. Surprisingly, we discovered that using the initial CAM with SAM can achieve on-par performance as the post-processed pseudo label generated from these modules with much less computational cost. Our approach is highly versatile and capable of seamless integration into existing WSSS models without modification to base networks or pipelines. Despite its simplicity, our approach improves the mean Intersection over Union (mIoU) of pseudo labels from five state-of-the-art WSSS methods by 6.2\% on average on the PASCAL VOC 2012 dataset.
Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.
A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.
We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.