亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A differentially private computation often begins with a bound on a $d$-dimensional statistic's $\ell_p$ sensitivity. The $K$-norm mechanism can yield more accurate additive noise by using a statistic-specific (and possibly non-$\ell_p$) norm. However, sampling such mechanisms requires sampling from the corresponding norm balls. These are $d$-dimensional convex polytopes, and the fastest known general algorithm for approximately sampling such polytopes takes time $\tilde O(d^{3+\omega})$, where $\omega \geq 2$ is the matrix multiplication exponent. For the simple problems of sum and ranked vote, this paper constructs samplers that run in time $\tilde O(d^2)$. More broadly, we suggest that problem-specific $K$-norm mechanisms may be an overlooked practical tool for private additive noise.

相關內容

The matrix semigroup membership problem asks, given square matrices $M,M_1,\ldots,M_k$ of the same dimension, whether $M$ lies in the semigroup generated by $M_1,\ldots,M_k$. It is classical that this problem is undecidable in general but decidable in case $M_1,\ldots,M_k$ commute. In this paper we consider the problem of whether, given $M_1,\ldots,M_k$, the semigroup generated by $M_1,\ldots,M_k$ contains a non-negative matrix. We show that in case $M_1,\ldots,M_k$ commute, this problem is decidable subject to Schanuel's Conjecture. We show also that the problem is undecidable if the commutativity assumption is dropped. A key lemma in our decidability result is a procedure to determine, given a matrix $M$, whether the sequence of matrices $(M^n)_{n\geq 0}$ is ultimately nonnegative. This answers a problem posed by S. Akshay (arXiv:2205.09190). The latter result is in stark contrast to the notorious fact that it is not known how to determine effectively whether for any specific matrix index $(i,j)$ the sequence $(M^n)_{i,j}$ is ultimately nonnegative (which is a formulation of the Ultimate Positivity Problem for linear recurrence sequences).

In this paper, we investigate the problem of deciding whether two random databases $\mathsf{X}\in\mathcal{X}^{n\times d}$ and $\mathsf{Y}\in\mathcal{Y}^{n\times d}$ are statistically dependent or not. This is formulated as a hypothesis testing problem, where under the null hypothesis, these two databases are statistically independent, while under the alternative, there exists an unknown row permutation $\sigma$, such that $\mathsf{X}$ and $\mathsf{Y}^\sigma$, a permuted version of $\mathsf{Y}$, are statistically dependent with some known joint distribution, but have the same marginal distributions as the null. We characterize the thresholds at which optimal testing is information-theoretically impossible and possible, as a function of $n$, $d$, and some spectral properties of the generative distributions of the datasets. For example, we prove that if a certain function of the eigenvalues of the likelihood function and $d$, is below a certain threshold, as $d\to\infty$, then weak detection (performing slightly better than random guessing) is statistically impossible, no matter what the value of $n$ is. This mimics the performance of an efficient test that thresholds a centered version of the log-likelihood function of the observed matrices. We also analyze the case where $d$ is fixed, for which we derive strong (vanishing error) and weak detection lower and upper bounds.

Graph-based kNN algorithms have garnered widespread popularity for machine learning tasks due to their simplicity and effectiveness. However, as factual data often inherit complex distributions, the conventional kNN graph's reliance on a unified k-value can hinder its performance. A crucial factor behind this challenge is the presence of ambiguous samples along decision boundaries that are inevitably more prone to incorrect classifications. To address the situation, we propose the Distribution-Informed adaptive kNN Graph (DaNNG), which combines adaptive kNN with distribution-aware graph construction. By incorporating an approximation of the distribution with customized k-adaption criteria, DaNNG can significantly improve performance on ambiguous samples, and hence enhance overall accuracy and generalization capability. Through rigorous evaluations on diverse benchmark datasets, DaNNG outperforms state-of-the-art algorithms, showcasing its adaptability and efficacy across various real-world scenarios.

In this paper, we develop sixth-order hybrid finite difference methods (FDMs) for the elliptic interface problem $-\nabla \cdot( a\nabla u)=f$ in $\Omega\backslash \Gamma$, where $\Gamma$ is a smooth interface inside $\Omega$. The variable scalar coefficient $a>0$ and source $f$ are possibly discontinuous across $\Gamma$. The hybrid FDMs utilize a $9$-point compact stencil at any interior regular points of the grid and a $13$-point stencil at irregular points near $\Gamma$. For interior regular points away from $\Gamma$, we obtain a sixth-order $9$-point compact FDM satisfying the sign and sum conditions for ensuring the M-matrix property. We also derive sixth-order compact ($4$-point for corners and $6$-point for edges) FDMs satisfying the sign and sum conditions for the M-matrix property at any boundary point subject to (mixed) Dirichlet/Neumann/Robin boundary conditions. Thus, for the elliptic problem without interface (i.e., $\Gamma$ is empty), our compact FDM has the M-matrix property for any mesh size $h>0$ and consequently, satisfies the discrete maximum principle, which guarantees the theoretical sixth-order convergence. For irregular points near $\Gamma$, we propose fifth-order $13$-point FDMs, whose stencil coefficients can be effectively calculated by recursively solving several small linear systems. Theoretically, the proposed high order FDMs use high order (partial) derivatives of the coefficient $a$, the source term $f$, the interface curve $\Gamma$, the two jump functions along $\Gamma$, and the functions on $\partial \Omega$. Numerically, we always use function values to approximate all required high order (partial) derivatives in our hybrid FDMs without losing accuracy. Our numerical experiments confirm the sixth-order convergence in the $l_{\infty}$ norm of the proposed hybrid FDMs for the elliptic interface problem.

Consider the triplet $(E, \mathcal{P}, \pi)$, where $E$ is a finite ground set, $\mathcal{P} \subseteq 2^E$ is a collection of subsets of $E$ and $\pi : \mathcal{P} \rightarrow [0,1]$ is a requirement function. Given a vector of marginals $\rho \in [0, 1]^E$, our goal is to find a distribution for a random subset $S \subseteq E$ such that $\operatorname{Pr}[e \in S] = \rho_e$ for all $e \in E$ and $\operatorname{Pr}[P \cap S \neq \emptyset] \geq \pi_P$ for all $P \in \mathcal{P}$, or to determine that no such distribution exists. Generalizing results of Dahan, Amin, and Jaillet, we devise a generic decomposition algorithm that solves the above problem when provided with a suitable sequence of admissible support candidates (ASCs). We show how to construct such ASCs for numerous settings, including supermodular requirements, Hoffman-Schwartz-type lattice polyhedra, and abstract networks where $\pi$ fulfils a conservation law. The resulting algorithm can be carried out efficiently when $\mathcal{P}$ and $\pi$ can be accessed via appropriate oracles. For any system allowing the construction of ASCs, our results imply a simple polyhedral description of the set of marginal vectors for which the decomposition problem is feasible. Finally, we characterize balanced hypergraphs as the systems $(E, \mathcal{P})$ that allow the perfect decomposition of any marginal vector $\rho \in [0,1]^E$, i.e., where we can always find a distribution reaching the highest attainable probability $\operatorname{Pr}[P \cap S \neq \emptyset] = \min \{ \sum_{e \in P} \rho_e, 1\}$ for all $P \in \mathcal{P}$.

In the Wishart model for sparse PCA we are given $n$ samples $Y_1,\ldots, Y_n$ drawn independently from a $d$-dimensional Gaussian distribution $N({0, Id + \beta vv^\top})$, where $\beta > 0$ and $v\in \mathbb{R}^d$ is a $k$-sparse unit vector, and we wish to recover $v$ (up to sign). We show that if $n \ge \Omega(d)$, then for every $t \ll k$ there exists an algorithm running in time $n\cdot d^{O(t)}$ that solves this problem as long as \[ \beta \gtrsim \frac{k}{\sqrt{nt}}\sqrt{\ln({2 + td/k^2})}\,. \] Prior to this work, the best polynomial time algorithm in the regime $k\approx \sqrt{d}$, called \emph{Covariance Thresholding} (proposed in [KNV15a] and analyzed in [DM14]), required $\beta \gtrsim \frac{k}{\sqrt{n}}\sqrt{\ln({2 + d/k^2})}$. For large enough constant $t$ our algorithm runs in polynomial time and has better guarantees than Covariance Thresholding. Previously known algorithms with such guarantees required quasi-polynomial time $d^{O(\log d)}$. In addition, we show that our techniques work with sparse PCA with adversarial perturbations studied in [dKNS20]. This model generalizes not only sparse PCA, but also other problems studied in prior works, including the sparse planted vector problem. As a consequence, we provide polynomial time algorithms for the sparse planted vector problem that have better guarantees than the state of the art in some regimes. Our approach also works with the Wigner model for sparse PCA. Moreover, we show that it is possible to combine our techniques with recent results on sparse PCA with symmetric heavy-tailed noise [dNNS22]. In particular, in the regime $k \approx \sqrt{d}$ we get the first polynomial time algorithm that works with symmetric heavy-tailed noise, while the algorithm from [dNNS22]. requires quasi-polynomial time in these settings.

For which unary predicates $P_1, \ldots, P_m$ is the MSO theory of the structure $\langle \mathbb{N}; <, P_1, \ldots, P_m \rangle$ decidable? We survey the state of the art, leading us to investigate combinatorial properties of almost-periodic, morphic, and toric words. In doing so, we show that if each $P_i$ can be generated by a toric dynamical system of a certain kind, then the attendant MSO theory is decidable.

We formalize and interpret the geometric structure of $d$-dimensional fully connected ReLU layers in neural networks. The parameters of a ReLU layer induce a natural partition of the input domain, such that the ReLU layer can be significantly simplified in each sector of the partition. This leads to a geometric interpretation of a ReLU layer as a projection onto a polyhedral cone followed by an affine transformation, in line with the description in [doi:10.48550/arXiv.1905.08922] for convolutional networks with ReLU activations. Further, this structure facilitates simplified expressions for preimages of the intersection between partition sectors and hyperplanes, which is useful when describing decision boundaries in a classification setting. We investigate this in detail for a feed-forward network with one hidden ReLU-layer, where we provide results on the geometric complexity of the decision boundary generated by such networks, as well as proving that modulo an affine transformation, such a network can only generate $d$ different decision boundaries. Finally, the effect of adding more layers to the network is discussed.

We consider the problem of learning a graph modeling the statistical relations of the $d$ variables of a dataset with $n$ samples $X \in \mathbb{R}^{n \times d}$. Standard approaches amount to searching for a precision matrix $\Theta$ representative of a Gaussian graphical model that adequately explains the data. However, most maximum likelihood-based estimators usually require storing the $d^{2}$ values of the empirical covariance matrix, which can become prohibitive in a high-dimensional setting. In this work, we adopt a compressive viewpoint and aim to estimate a sparse $\Theta$ from a sketch of the data, i.e. a low-dimensional vector of size $m \ll d^{2}$ carefully designed from $X$ using nonlinear random features. Under certain assumptions on the spectrum of $\Theta$ (or its condition number), we show that it is possible to estimate it from a sketch of size $m=\Omega((d+2k)\log(d))$ where $k$ is the maximal number of edges of the underlying graph. These information-theoretic guarantees are inspired by compressed sensing theory and involve restricted isometry properties and instance optimal decoders. We investigate the possibility of achieving practical recovery with an iterative algorithm based on the graphical lasso, viewed as a specific denoiser. We compare our approach and graphical lasso on synthetic datasets, demonstrating its favorable performance even when the dataset is compressed.

We provide a simple online $\Delta(1+o(1))$-edge-coloring algorithm for bipartite graphs of maximum degree $\Delta=\omega(\log n)$ under adversarial vertex arrivals on one side of the graph. Our algorithm slightly improves the result of (Cohen, Peng and Wajc, FOCS19), which was the first, and currently only, to obtain an asymptotically optimal $\Delta(1+o(1))$ guarantee for an adversarial arrival model. More importantly, our algorithm provides a new, simpler approach for tackling online edge coloring.

北京阿比特科技有限公司