AI models (including LLM) often rely on narrative question-answering (QA) datasets to provide customized QA functionalities to support downstream children education applications; however, existing datasets only include QA pairs that are grounded within the given storybook content, but children can learn more when teachers refer the storybook content to real-world knowledge (e.g., commonsense knowledge). We introduce the FairytaleCQA dataset, which is annotated by children education experts, to supplement 278 storybook narratives with educationally appropriate commonsense knowledge. The dataset has 5,868 QA pairs that not only originate from the storybook narrative but also contain the commonsense knowledge grounded by an external knowledge graph (i.e., ConceptNet). A follow-up experiment shows that a smaller model (T5-large) fine-tuned with FairytaleCQA reliably outperforms much larger prompt-engineered LLM (e.g., GPT-4) in this new QA-pair generation task (QAG). This result suggests that: 1) our dataset brings novel challenges to existing LLMs, and 2) human experts' data annotation are still critical as they have much nuanced knowledge that LLMs do not know in the children educational domain.
Machine learning (ML) models are fundamentally shaped by data, and building inclusive ML systems requires significant considerations around how to design representative datasets. Yet, few novice-oriented ML modeling tools are designed to foster hands-on learning of dataset design practices, including how to design for data diversity and inspect for data quality. To this end, we outline a set of four data design practices (DDPs) for designing inclusive ML models and share how we designed a tablet-based application called Co-ML to foster learning of DDPs through a collaborative ML model building experience. With Co-ML, beginners can build image classifiers through a distributed experience where data is synchronized across multiple devices, enabling multiple users to iteratively refine ML datasets in discussion and coordination with their peers. We deployed Co-ML in a 2-week-long educational AIML Summer Camp, where youth ages 13-18 worked in groups to build custom ML-powered mobile applications. Our analysis reveals how multi-user model building with Co-ML, in the context of student-driven projects created during the summer camp, supported development of DDPs including incorporating data diversity, evaluating model performance, and inspecting for data quality. Additionally, we found that students' attempts to improve model performance often prioritized learnability over class balance. Through this work, we highlight how the combination of collaboration, model testing interfaces, and student-driven projects can empower learners to actively engage in exploring the role of data in ML systems.
Language models such as Bidirectional Encoder Representations from Transformers (BERT) have been very effective in various Natural Language Processing (NLP) and text mining tasks including text classification. However, some tasks still pose challenges for these models, including text classification with limited labels. This can result in a cold-start problem. Although some approaches have attempted to address this problem through single-stage clustering as an intermediate training step coupled with a pre-trained language model, which generates pseudo-labels to improve classification, these methods are often error-prone due to the limitations of the clustering algorithms. To overcome this, we have developed a novel two-stage intermediate clustering with subsequent fine-tuning that models the pseudo-labels reliably, resulting in reduced prediction errors. The key novelty in our model, IDoFew, is that the two-stage clustering coupled with two different clustering algorithms helps exploit the advantages of the complementary algorithms that reduce the errors in generating reliable pseudo-labels for fine-tuning. Our approach has shown significant improvements compared to strong comparative models.
DETR accomplishes end-to-end object detection through iteratively generating multiple object candidates based on image features and promoting one candidate for each ground-truth object. The traditional training procedure using one-to-one supervision in the original DETR lacks direct supervision for the object detection candidates. We aim at improving the DETR training efficiency by explicitly supervising the candidate generation procedure through mixing one-to-one supervision and one-to-many supervision. Our approach, namely MS-DETR, is simple, and places one-to-many supervision to the object queries of the primary decoder that is used for inference. In comparison to existing DETR variants with one-to-many supervision, such as Group DETR and Hybrid DETR, our approach does not need additional decoder branches or object queries. The object queries of the primary decoder in our approach directly benefit from one-to-many supervision and thus are superior in object candidate prediction. Experimental results show that our approach outperforms related DETR variants, such as DN-DETR, Hybrid DETR, and Group DETR, and the combination with related DETR variants further improves the performance.
The deployment of multimodal large language models (MLLMs) has brought forth a unique vulnerability: susceptibility to malicious attacks through visual inputs. We delve into the novel challenge of defending MLLMs against such attacks. We discovered that images act as a "foreign language" that is not considered during alignment, which can make MLLMs prone to producing harmful responses. Unfortunately, unlike the discrete tokens considered in text-based LLMs, the continuous nature of image signals presents significant alignment challenges, which poses difficulty to thoroughly cover the possible scenarios. This vulnerability is exacerbated by the fact that open-source MLLMs are predominantly fine-tuned on limited image-text pairs that is much less than the extensive text-based pretraining corpus, which makes the MLLMs more prone to catastrophic forgetting of their original abilities during explicit alignment tuning. To tackle these challenges, we introduce MLLM-Protector, a plug-and-play strategy combining a lightweight harm detector and a response detoxifier. The harm detector's role is to identify potentially harmful outputs from the MLLM, while the detoxifier corrects these outputs to ensure the response stipulates to the safety standards. This approach effectively mitigates the risks posed by malicious visual inputs without compromising the model's overall performance. Our results demonstrate that MLLM-Protector offers a robust solution to a previously unaddressed aspect of MLLM security.
Generative Pre-trained Transformer (GPT) models have exhibited exciting progress in their capabilities, capturing the interest of practitioners and the public alike. Yet, while the literature on the trustworthiness of GPT models remains limited, practitioners have proposed employing capable GPT models for sensitive applications such as healthcare and finance -- where mistakes can be costly. To this end, this work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5, considering diverse perspectives -- including toxicity, stereotype bias, adversarial robustness, out-of-distribution robustness, robustness on adversarial demonstrations, privacy, machine ethics, and fairness. Based on our evaluations, we discover previously unpublished vulnerabilities to trustworthiness threats. For instance, we find that GPT models can be easily misled to generate toxic and biased outputs and leak private information in both training data and conversation history. We also find that although GPT-4 is usually more trustworthy than GPT-3.5 on standard benchmarks, GPT-4 is more vulnerable given jailbreaking system or user prompts, potentially because GPT-4 follows (misleading) instructions more precisely. Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps. Our benchmark is publicly available at //decodingtrust.github.io/; our dataset can be previewed at //huggingface.co/datasets/AI-Secure/DecodingTrust; a concise version of this work is at //openreview.net/pdf?id=kaHpo8OZw2.
The crux of effective out-of-distribution (OOD) detection lies in acquiring a robust in-distribution (ID) representation, distinct from OOD samples. While previous methods predominantly leaned on recognition-based techniques for this purpose, they often resulted in shortcut learning, lacking comprehensive representations. In our study, we conducted a comprehensive analysis, exploring distinct pretraining tasks and employing various OOD score functions. The results highlight that the feature representations pre-trained through reconstruction yield a notable enhancement and narrow the performance gap among various score functions. This suggests that even simple score functions can rival complex ones when leveraging reconstruction-based pretext tasks. Reconstruction-based pretext tasks adapt well to various score functions. As such, it holds promising potential for further expansion. Our OOD detection framework, MOODv2, employs the masked image modeling pretext task. Without bells and whistles, MOODv2 impressively enhances 14.30% AUROC to 95.68% on ImageNet and achieves 99.98% on CIFAR-10.
When exploring the development of Artificial General Intelligence (AGI), a critical task for these models involves interpreting and processing information from multiple image inputs. However, Large Multimodal Models (LMMs) encounter two issues in such scenarios: (1) a lack of fine-grained perception, and (2) a tendency to blend information across multiple images. We first extensively investigate the capability of LMMs to perceive fine-grained visual details when dealing with multiple input images. The research focuses on two aspects: first, image-to-image matching (to evaluate whether LMMs can effectively reason and pair relevant images), and second, multi-image-to-text matching (to assess whether LMMs can accurately capture and summarize detailed image information). We conduct evaluations on a range of both open-source and closed-source large models, including GPT-4V, Gemini, OpenFlamingo, and MMICL. To enhance model performance, we further develop a Contrastive Chain-of-Thought (CoCoT) prompting approach based on multi-input multimodal models. This method requires LMMs to compare the similarities and differences among multiple image inputs, and then guide the models to answer detailed questions about multi-image inputs based on the identified similarities and differences. Our experimental results showcase CoCoT's proficiency in enhancing the multi-image comprehension capabilities of large multimodal models.
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.