Since the recent prosperity of Large Language Models (LLMs), there have been interleaved discussions regarding how to reduce hallucinations from LLM responses, how to increase the factuality of LLMs, and whether Knowledge Graphs (KGs), which store the world knowledge in a symbolic form, will be replaced with LLMs. In this paper, we try to answer these questions from a new angle: How knowledgeable are LLMs? To answer this question, we constructed Head-to-Tail, a benchmark that consists of 18K question-answer (QA) pairs regarding head, torso, and tail facts in terms of popularity. We designed an automated evaluation method and a set of metrics that closely approximate the knowledge an LLM confidently internalizes. Through a comprehensive evaluation of 14 publicly available LLMs, we show that existing LLMs are still far from being perfect in terms of their grasp of factual knowledge, especially for facts of torso-to-tail entities.
The unparalleled performance of closed-sourced ChatGPT has sparked efforts towards its democratization, with notable strides made by leveraging real user and ChatGPT conversations, as evidenced by Vicuna. However, due to challenges in gathering conversations involving human participation, current endeavors like Baize and UltraChat aim to automatically generate conversational data. They primarily rely on ChatGPT conducting roleplay to simulate human behaviors based on instructions rather than genuine learning from humans, resulting in limited scope, diminished diversity, and an absence of genuine multi-round conversational dynamics. To address the above issues, we target human questions extracted from genuine human-machine conversations as a learning goal and train a user simulator called `Socratic' to produce a high-quality human-centric synthetic conversation dataset. Subsequently, this dataset was used to train our assistant model, named `PlatoLM'. Experimentally, PlatoLM outpaces baseline models in both Vicuna-Bench and MT-Bench by pairwise comparison when considering equivalent training set sizes, and manual evaluation also shows that our model is highly competitive. Impressively, when fine-tuned with the latest LLaMA 2 model, PlatoLM achieves the SOTA performance among 7B models (including LLaMA-2-7B-chat and Vicuna-7B) in MT-Bench benchmark and in Alpaca-Eval benchmark, it ranks second among 7B models, even beating some larger scale models (including LLaMA-2-13B-chat and GPT-3.5). Further in-depth analysis demonstrates the scalability and transferability of our approach. The code is available at //github.com/FreedomIntelligence/PlatoLM.
With the emergence of numerous legal LLMs, there is currently a lack of a comprehensive benchmark for evaluating their legal abilities. In this paper, we propose the first Chinese Legal LLMs benchmark based on legal capabilities. Through the collaborative efforts of legal and artificial intelligence experts, we divide the legal capabilities of LLMs into three levels: basic legal NLP capability, basic legal application capability, and complex legal application capability. We have completed the first phase of evaluation, which mainly focuses on the capability of basic legal NLP. The evaluation results show that although some legal LLMs have better performance than their backbones, there is still a gap compared to ChatGPT. Our benchmark can be found at URL.
Large Language Models (LLMs) have shown impressive abilities in various tasks. However, fundamentally improving them depends on high-quality datasets or computationally expensive fine-tuning. On the contrary, humans can easily improve themselves by self-thinking and memory, without external resources. In this paper, we propose a framework, MoT, to let the LLM self-improve through Memory-of-Thought, without annotated datasets and parameter updates. Specifically, MoT is divided into two stages: 1. before the test stage, the LLM pre-thinks on the unlabeled dataset and saves the high-confidence thoughts as external memory; 2. During the test stage, given a test question, the LLM recalls relevant memory to help itself reason and answer it. Experimental results show that MoT can help ChatGPT significantly improve its abilities in arithmetic reasoning, commonsense reasoning, factual reasoning, and natural language inference. Further analyses show that each component contributes critically to the improvements and MoT can lead to consistent improvements across various CoT methods and LLMs.
Large Language Models (LLMs) have achieved remarkable success in reasoning tasks with the development of prompting methods. However, existing prompting approaches cannot reuse insights of solving similar problems and suffer from accumulated errors in multi-step reasoning, since they prompt LLMs to reason \textit{from scratch}. To address these issues, we propose \textbf{\textit{Thought Propagation} (TP)}, which explores the analogous problems and leverages their solutions to enhance the complex reasoning ability of LLMs. These analogous problems are related to the input one, with reusable solutions and problem-solving strategies. Thus, it is promising to propagate insights of solving previous analogous problems to inspire new problem-solving. To achieve this, TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one. Then, TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch. TP is compatible with existing prompting approaches, allowing plug-and-play generalization and enhancement in a wide range of tasks without much labor in task-specific prompt engineering. Experiments across three challenging tasks demonstrate TP enjoys a substantial improvement over the baselines by an average of 12\% absolute increase in finding the optimal solutions in Shortest-path Reasoning, 13\% improvement of human preference in Creative Writing, and 15\% enhancement in the task completion rate of LLM-Agent Planning.
The immense evolution in Large Language Models (LLMs) has underscored the importance of massive, heterogeneous, and high-quality data. A data recipe is a mixture of data from different sources for training LLMs, which plays a vital role in LLMs' performance. Existing open-source tools for LLM data processing are mostly tailored for specific data recipes. To continuously uncover the potential of LLMs, incorporate data from new sources, and improve LLMs' performance, we build a new system named Data-Juicer, with which we can efficiently generate diverse data recipes, explore different possibilities in forming data mixtures, and evaluate their effects on model performance. Different from traditional data-analytics pipelines, Data-Juicer faces some unique challenges. Firstly, the possible data sources for forming data recipes are truly heterogeneous and massive with various qualities. Secondly, it is extremely expensive to precisely evaluate data recipes' impact on LLMs' performance. Thirdly, the end users of Data-Juicer, model developers, need sufficient flexibility to configure and evaluate different data recipes. Data-Juicer features a fine-grained abstraction of pipelines for constructing data recipes, with over 50 built-in operators for easy composition and extension. By incorporating visualization and auto-evaluation capabilities, Data-Juicer enables a timely feedback loop for both LLM pre-training and fine-tuning. Further, Data-Juicer is optimized and integrated with ecosystems for LLM training, evaluation, and distributed computing. The data recipes derived with Data-Juicer gain notable improvements on state-of-the-art LLMs, by up to 7.45% increase in averaged score across 16 LLM benchmarks and 17.5% higher win rate in pair-wise GPT-4 evaluations. Our system, data recipes, and tutorials are released, calling for broader data-centric research on training and understanding LLMs.
Recent advances in text-to-speech, particularly those based on Graph Neural Networks (GNNs), have significantly improved the expressiveness of short-form synthetic speech. However, generating human-parity long-form speech with high dynamic prosodic variations is still challenging. To address this problem, we expand the capabilities of GNNs with a hierarchical prosody modeling approach, named HiGNN-TTS. Specifically, we add a virtual global node in the graph to strengthen the interconnection of word nodes and introduce a contextual attention mechanism to broaden the prosody modeling scope of GNNs from intra-sentence to inter-sentence. Additionally, we perform hierarchical supervision from acoustic prosody on each node of the graph to capture the prosodic variations with a high dynamic range. Ablation studies show the effectiveness of HiGNN-TTS in learning hierarchical prosody. Both objective and subjective evaluations demonstrate that HiGNN-TTS significantly improves the naturalness and expressiveness of long-form synthetic speech.
Recent years have witnessed much interest in temporal reasoning over knowledge graphs (KG) for complex question answering (QA), but there remains a substantial gap in human capabilities. We explore how to generalize relational graph convolutional networks (RGCN) for temporal KGQA. Specifically, we propose a novel, intuitive and interpretable scheme to modulate the messages passed through a KG edge during convolution, based on the relevance of its associated time period to the question. We also introduce a gating device to predict if the answer to a complex temporal question is likely to be a KG entity or time and use this prediction to guide our scoring mechanism. We evaluate the resulting system, which we call TwiRGCN, on TimeQuestions, a recently released, challenging dataset for multi-hop complex temporal QA. We show that TwiRGCN significantly outperforms state-of-the-art systems on this dataset across diverse question types. Notably, TwiRGCN improves accuracy by 9--10 percentage points for the most difficult ordinal and implicit question types.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.