In this work, we present a new family of quadratic APN functions constructed via biprojective polynomials. Our family includes one of the two APN families introduced by G\"olo\v{g}lu in 2022. Moreover, we show that for n = 12, from our construction, we can obtain APN functions that are CCZ-inequivalent to any other known APN function over $\mathbb{F}_{2^{12}}$.
This paper introduces scalable, sampling-based algorithms that optimize trained neural networks with ReLU activations. We first propose an iterative algorithm that takes advantage of the piecewise linear structure of ReLU neural networks and reduces the initial mixed-integer optimization problem (MIP) into multiple easy-to-solve linear optimization problems (LPs) through sampling. Subsequently, we extend this approach by searching around the neighborhood of the LP solution computed at each iteration. This scheme allows us to devise a second, enhanced algorithm that reduces the initial MIP problem into smaller, easier-to-solve MIPs. We analytically show the convergence of the methods and we provide a sample complexity guarantee. We also validate the performance of our algorithms by comparing them against state-of-the-art MIP-based methods. Finally, we show computationally how the sampling algorithms can be used effectively to warm-start MIP-based methods.
Batch normalization (BN) has become a critical component across diverse deep neural networks. The network with BN is invariant to positively linear re-scale transformation, which makes there exist infinite functionally equivalent networks with different scales of weights. However, optimizing these equivalent networks with the first-order method such as stochastic gradient descent will obtain a series of iterates converging to different local optima owing to their different gradients across training. To obviate this, we propose a quotient manifold \emph{PSI manifold}, in which all the equivalent weights of the network with BN are regarded as the same element. Next, we construct gradient descent and stochastic gradient descent on the proposed PSI manifold to train the network with BN. The two algorithms guarantee that every group of equivalent weights (caused by positively re-scaling) converge to the equivalent optima. Besides that, we give convergence rates of the proposed algorithms on the PSI manifold. The results show that our methods accelerate training compared with the algorithms on the Euclidean weight space. Finally, empirical results verify that our algorithms consistently improve the existing methods in both convergence rate and generalization ability under various experimental settings.
Many real-world settings involve costs for performing actions; transaction costs in financial systems and fuel costs being common examples. In these settings, performing actions at each time step quickly accumulates costs leading to vastly suboptimal outcomes. Additionally, repeatedly acting produces wear and tear and ultimately, damage. Determining when to act is crucial for achieving successful outcomes and yet, the challenge of efficiently learning to behave optimally when actions incur minimally bounded costs remains unresolved. In this paper, we introduce a reinforcement learning (RL) framework named Learnable Impulse Control Reinforcement Algorithm (LICRA), for learning to optimally select both when to act and which actions to take when actions incur costs. At the core of LICRA is a nested structure that combines RL and a form of policy known as impulse control which learns to maximise objectives when actions incur costs. We prove that LICRA, which seamlessly adopts any RL method, converges to policies that optimally select when to perform actions and their optimal magnitudes. We then augment LICRA to handle problems in which the agent can perform at most $k<\infty$ actions and more generally, faces a budget constraint. We show LICRA learns the optimal value function and ensures budget constraints are satisfied almost surely. We demonstrate empirically LICRA's superior performance against benchmark RL methods in OpenAI gym's Lunar Lander and in Highway environments and a variant of the Merton portfolio problem within finance.
In this work, we propose an efficient minimax optimal global optimization algorithm for multivariate Lipschitz continuous functions. To evaluate the performance of our approach, we utilize the average regret instead of the traditional simple regret, which, as we show, is not suitable for use in the multivariate non-convex optimization because of the inherent hardness of the problem itself. Since we study the average regret of the algorithm, our results directly imply a bound for the simple regret as well. Instead of constructing lower bounding proxy functions, our method utilizes a predetermined query creation rule, which makes it computationally superior to the Piyavskii-Shubert variants. We show that our algorithm achieves an average regret bound of $O(L\sqrt{n}T^{-\frac{1}{n}})$ for the optimization of an $n$-dimensional $L$-Lipschitz continuous objective in a time horizon $T$, which we show to be minimax optimal.
We introduce a new type of Krasnoselskii's result. Using a simple differentiability condition, we relax the nonexpansive condition in Krasnoselskii's theorem. More clearly, we analyze the convergence of the sequence $x_{n+1}=\frac{x_n+g(x_n)}{2}$ based on some differentiability condition of $g$ and present some fixed point results. We introduce some iterative sequences that for any real differentiable function $g$ and any starting point $x_0\in \mathbb [a,b]$ converge monotonically to the nearest root of $g$ in $[a,b]$ that lay to the right or left side of $x_0$. Based on this approach, we present an efficient and novel method for finding the real roots of real functions. We prove that no root will be missed in our method. It is worth mentioning that our iterative method is free from the derivative evaluation which can be regarded as an advantage of this method in comparison with many other methods. Finally, we illustrate our results with some numerical examples.
We study sequential decision making problems aimed at maximizing the expected total reward while satisfying a constraint on the expected total utility. We employ the natural policy gradient method to solve the discounted infinite-horizon optimal control problem for Constrained Markov Decision Processes (constrained MDPs). Specifically, we propose a new Natural Policy Gradient Primal-Dual (NPG-PD) method that updates the primal variable via natural policy gradient ascent and the dual variable via projected sub-gradient descent. Although the underlying maximization involves a nonconcave objective function and a nonconvex constraint set, under the softmax policy parametrization we prove that our method achieves global convergence with sublinear rates regarding both the optimality gap and the constraint violation. Such convergence is independent of the size of the state-action space, i.e., it is~dimension-free. Furthermore, for log-linear and general smooth policy parametrizations, we establish sublinear convergence rates up to a function approximation error caused by restricted policy parametrization. We also provide convergence and finite-sample complexity guarantees for two sample-based NPG-PD algorithms. Finally, we use computational experiments to showcase the merits and the effectiveness of our approach.
Traditional models of active learning assume a learner can directly manipulate or query a covariate $X$ in order to study its relationship with a response $Y$. However, if $X$ is a feature of a complex system, it may be possible only to indirectly influence $X$ by manipulating a control variable $Z$, a scenario we refer to as Indirect Active Learning. Under a nonparametric model of Indirect Active Learning with a fixed budget, we study minimax convergence rates for estimating the relationship between $X$ and $Y$ locally at a point, obtaining different rates depending on the complexities and noise levels of the relationships between $Z$ and $X$ and between $X$ and $Y$. We also identify minimax rates for passive learning under comparable assumptions. In many cases, our results show that, while there is an asymptotic benefit to active learning, this benefit is fully realized by a simple two-stage learner that runs two passive experiments in sequence.
In the maximum satisfiability problem (MAX-SAT) we are given a propositional formula in conjunctive normal form and have to find an assignment that satisfies as many clauses as possible. We study the parallel parameterized complexity of various versions of MAX-SAT and provide the first constant-time algorithms parameterized either by the solution size or by the allowed excess relative to some guarantee ("above guarantee" versions). For the dual parameterized version where the parameter is the number of clauses we are allowed to leave unsatisfied, we present the first parallel algorithm for MAX-2SAT (known as ALMOST-2SAT). The difficulty in solving ALMOST-2SAT in parallel comes from the fact that the iterative compression method, originally developed to prove that the problem is fixed-parameter tractable at all, is inherently sequential. We observe that a graph flow whose value is a parameter can be computed in parallel and use this fact to develop a parallel algorithm for the vertex cover problem parameterized above the size of a given matching. Finally, we study the parallel complexity of MAX-SAT parameterized by the vertex cover number, the treedepth, the feedback vertex set number, and the treewidth of the input's incidence graph. While MAX-SAT is fixed-parameter tractable for all of these parameters, we show that they allow different degrees of possible parallelization. For all four we develop dedicated parallel algorithms that are constructive, meaning that they output an optimal assignment - in contrast to results that can be obtained by parallel meta-theorems, which often only solve the decision version.
Nowadays, the shipbuilding industry is facing a radical change towards solutions with a smaller environmental impact. This can be achieved with low emissions engines, optimized shape designs with lower wave resistance and noise generation, and by reducing the metal raw materials used during the manufacturing. This work focuses on the last aspect by presenting a complete structural optimization pipeline for modern passenger ship hulls which exploits advanced model order reduction techniques to reduce the dimensionality of both input parameters and outputs of interest. We introduce a novel approach which incorporates parameter space reduction through active subspaces into the proper orthogonal decomposition with interpolation method. This is done in a multi-fidelity setting. We test the whole framework on a simplified model of a midship section and on the full model of a passenger ship, controlled by 20 and 16 parameters, respectively. We present a comprehensive error analysis and show the capabilities and usefulness of the methods especially during the preliminary design phase, finding new unconsidered designs while handling high dimensional parameterizations.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.