In the maximum satisfiability problem (MAX-SAT) we are given a propositional formula in conjunctive normal form and have to find an assignment that satisfies as many clauses as possible. We study the parallel parameterized complexity of various versions of MAX-SAT and provide the first constant-time algorithms parameterized either by the solution size or by the allowed excess relative to some guarantee ("above guarantee" versions). For the dual parameterized version where the parameter is the number of clauses we are allowed to leave unsatisfied, we present the first parallel algorithm for MAX-2SAT (known as ALMOST-2SAT). The difficulty in solving ALMOST-2SAT in parallel comes from the fact that the iterative compression method, originally developed to prove that the problem is fixed-parameter tractable at all, is inherently sequential. We observe that a graph flow whose value is a parameter can be computed in parallel and use this fact to develop a parallel algorithm for the vertex cover problem parameterized above the size of a given matching. Finally, we study the parallel complexity of MAX-SAT parameterized by the vertex cover number, the treedepth, the feedback vertex set number, and the treewidth of the input's incidence graph. While MAX-SAT is fixed-parameter tractable for all of these parameters, we show that they allow different degrees of possible parallelization. For all four we develop dedicated parallel algorithms that are constructive, meaning that they output an optimal assignment - in contrast to results that can be obtained by parallel meta-theorems, which often only solve the decision version.
Given an integer $k$ and a graph where every edge is colored either red or blue, the goal of the exact matching problem is to find a perfect matching with the property that exactly $k$ of its edges are red. Soon after Papadimitriou and Yannakakis introduced the problem in 1982, a randomized polynomial-time algorithm solving the problem was described by Mulmuley et al. Despite a lot of effort, it is still not known today whether a deterministic polynomial-time algorithm exists. This makes the exact matching problem an important candidate to test the popular conjecture that the complexity classes P and RP are equal. In a recent article, progress was made towards this goal by showing that for (bipartite) graphs of bounded (bipartite) independence number, a polynomial time algorithm exists. In terms of parameterized complexity, this algorithm was an XP-algorithm parameterized by the independence number. In this article, we improve the techniques to obtain an FPT-algorithm for bipartite graphs. If the input is a general graph we show that one can at least compute a perfect matching $M$ which has the correct number of red edges modulo 2. This is motivated by our last result, in which we prove that an FPT algorithm for general graphs reduces to the problem of finding in polynomial time a perfect matching $M$ with the correct number of red edges modulo 2 and additionally at most $k$ red edges.
This paper first strictly proved that the growth of the second moment of a large class of Gaussian processes is not greater than power function and the covariance matrix is strictly positive definite. Under these two conditions, the maximum likelihood estimators of the mean and variance of such classes of drift Gaussian process have strong consistency under broader growth of t_n. At the same time, the asymptotic normality of binary random vectors and the Berry-Ess\'{e}en bound of estimators are obtained by using the Stein's method via Malliavian calculus.
In Bora et al. (2017), a mathematical framework was developed for compressed sensing guarantees in the setting where the measurement matrix is Gaussian and the signal structure is the range of a generative neural network (GNN). The problem of compressed sensing with GNNs has since been extensively analyzed when the measurement matrix and/or network weights follow a subgaussian distribution. We move beyond the subgaussian assumption, to measurement matrices that are derived by sampling uniformly at random rows of a unitary matrix (including subsampled Fourier measurements as a special case). Specifically, we prove the first known restricted isometry guarantee for generative compressed sensing with subsampled isometries, and provide recovery bounds with nearly order-optimal sample complexity, addressing an open problem of Scarlett et al. (2022, p. 10). Recovery efficacy is characterized by the coherence, a new parameter, which measures the interplay between the range of the network and the measurement matrix. Our approach relies on subspace counting arguments and ideas central to high-dimensional probability. Furthermore, we propose a regularization strategy for training GNNs to have favourable coherence with the measurement operator. We provide compelling numerical simulations that support this regularized training strategy: our strategy yields low coherence networks that require fewer measurements for signal recovery. This, together with our theoretical results, supports coherence as a natural quantity for characterizing generative compressed sensing with subsampled isometries.
We provide a polynomial-time algorithm for b-Coloring on graphs of constant clique-width. This unifies and extends nearly all previously known polynomial time results on graph classes, and answers open questions posed by Campos and Silva [Algorithmica, 2018] and Bonomo et al. [Graphs Combin., 2009]. This constitutes the first result concerning structural parameterizations of this problem. We show that the problem is FPT when parameterized by the vertex cover number on general graphs, and on chordal graphs when parameterized by the number of colors. Additionally, we observe that our algorithm for graphs of bounded clique-width can be adapted to solve the Fall Coloring problem within the same runtime bound. The running times of the clique-width based algorithms for b-Coloring and Fall Coloring are tight under the Exponential Time Hypothesis.
The deployment of the sensor nodes (SNs) always plays a decisive role in the system performance of wireless sensor networks (WSNs). In this work, we propose an optimal deployment method for practical heterogeneous WSNs which gives a deep insight into the trade-off between the reliability and deployment cost. Specifically, this work aims to provide the optimal deployment of SNs to maximize the coverage degree and connection degree, and meanwhile minimize the overall deployment cost. In addition, this work fully considers the heterogeneity of SNs (i.e. differentiated sensing range and deployment cost) and three-dimensional (3-D) deployment scenarios. This is a multi-objective optimization problem, non-convex, multimodal and NP-hard. To solve it, we develop a novel swarm-based multi-objective optimization algorithm, known as the competitive multi-objective marine predators algorithm (CMOMPA) whose performance is verified by comprehensive comparative experiments with ten other stateof-the-art multi-objective optimization algorithms. The computational results demonstrate that CMOMPA is superior to others in terms of convergence and accuracy and shows excellent performance on multimodal multiobjective optimization problems. Sufficient simulations are also conducted to evaluate the effectiveness of the CMOMPA based optimal SNs deployment method. The results show that the optimized deployment can balance the trade-off among deployment cost, sensing reliability and network reliability. The source code is available on //github.com/iNet-WZU/CMOMPA.
We consider the bilevel minimum spanning tree (BMST) problem where the leader and the follower choose a spanning tree together, according to different objective functions. By showing that this problem is NP-hard in general, we answer an open question stated in by Shi et al. We prove that BMST remains hard even in the special case where the follower only controls a matching. Moreover, by a polynomial reduction from the vertex-disjoint Steiner trees problem, we give some evidence that BMST might even remain hard in case the follower controls only few edges. On the positive side, we present a polynomial-time $(|V|-1)$-approximation algorithm for BMST, where $|V|$ is the number of vertices in the input graph. Moreover, considering the number of edges controlled by the follower as parameter, we show that 2-approximating BMST is fixed-parameter tractable and that, in case of uniform costs on leader's edges, even solving BMST exactly is fixed-parameter tractable. We finally consider bottleneck variants of BMST and settle the complexity landscape of all combinations of sum or bottleneck objective functions for the leader and follower, for the optimistic as well as the pessimistic setting.
A quantum circuit must be preprocessed before implementing on NISQ devices due to the connectivity constraint. Quantum circuit mapping (QCM) transforms the circuit into an equivalent one that is compliant with the NISQ device's architecture constraint by adding SWAP gates. The QCM problem asks the minimal number of auxiliary SWAP gates, and is NP-complete. The complexity of QCM with fixed parameters is studied in the paper. We give an exact algorithm for QCM, and show that the algorithm runs in polynomial time if the NISQ device's architecture is fixed. If the number of qubits of the quantum circuit is fixed, we show that the QCM problem is NL-complete by a reduction from the undirected shortest path problem. Moreover, the fixed-parameter complexity of QCM is W[1]-hard when parameterized by the number of qubits of the quantum circuit. We prove the result by a reduction from the clique problem. If taking the depth of the quantum circuits and the coupling graphs as parameters, we show that the QCM problem is still NP-complete over shallow quantum circuits, and planar, bipartite and degree bounded coupling graphs.
We introduce a general method for obtaining fixed-parameter algorithms for problems about finding paths in undirected graphs, where the length of the path could be unbounded in the parameter. The first application of our method is as follows. We give a randomized algorithm, that given a colored $n$-vertex undirected graph, vertices $s$ and $t$, and an integer $k$, finds an $(s,t)$-path containing at least $k$ different colors in time $2^k n^{O(1)}$. This is the first FPT algorithm for this problem, and it generalizes the algorithm of Bj\"orklund, Husfeldt, and Taslaman [SODA 2012] on finding a path through $k$ specified vertices. It also implies the first $2^k n^{O(1)}$ time algorithm for finding an $(s,t)$-path of length at least $k$. Our method yields FPT algorithms for even more general problems. For example, we consider the problem where the input consists of an $n$-vertex undirected graph $G$, a matroid $M$ whose elements correspond to the vertices of $G$ and which is represented over a finite field of order $q$, a positive integer weight function on the vertices of $G$, two sets of vertices $S,T \subseteq V(G)$, and integers $p,k,w$, and the task is to find $p$ vertex-disjoint paths from $S$ to $T$ so that the union of the vertices of these paths contains an independent set of $M$ of cardinality $k$ and weight $w$, while minimizing the sum of the lengths of the paths. We give a $2^{p+O(k^2 \log (q+k))} n^{O(1)} w$ time randomized algorithm for this problem.
We initiate a study of the streaming complexity of constraint satisfaction problems (CSPs) when the constraints arrive in a random order. We show that there exists a CSP, namely $\textsf{Max-DICUT}$, for which random ordering makes a provable difference. Whereas a $4/9 \approx 0.445$ approximation of $\textsf{DICUT}$ requires $\Omega(\sqrt{n})$ space with adversarial ordering, we show that with random ordering of constraints there exists a $0.48$-approximation algorithm that only needs $O(\log n)$ space. We also give new algorithms for $\textsf{Max-DICUT}$ in variants of the adversarial ordering setting. Specifically, we give a two-pass $O(\log n)$ space $0.48$-approximation algorithm for general graphs and a single-pass $\tilde{O}(\sqrt{n})$ space $0.48$-approximation algorithm for bounded degree graphs. On the negative side, we prove that CSPs where the satisfying assignments of the constraints support a one-wise independent distribution require $\Omega(\sqrt{n})$-space for any non-trivial approximation, even when the constraints are randomly ordered. This was previously known only for adversarially ordered constraints. Extending the results to randomly ordered constraints requires switching the hard instances from a union of random matchings to simple Erd\"os-Renyi random (hyper)graphs and extending tools that can perform Fourier analysis on such instances. The only CSP to have been considered previously with random ordering is $\textsf{Max-CUT}$ where the ordering is not known to change the approximability. Specifically it is known to be as hard to approximate with random ordering as with adversarial ordering, for $o(\sqrt{n})$ space algorithms. Our results show a richer variety of possibilities and motivate further study of CSPs with randomly ordered constraints.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.