In calculating integral or discrete transforms, use has been made of fast algorithms for multiplying vectors by matrices whose elements are specified as values of special (Chebyshev, Legendre, Laguerre, etc.) functions. The currently available fast algorithms are several orders of magnitude less efficient than the fast Fourier transform. To achieve higher efficiency, a convenient general approach for calculating matrix-vector products for some class of problems is proposed. A series of fast simple-structure algorithms developed under this approach can be efficiently implemented with software based on modern microprocessors. The method has a pre-computation complexity of $O(N^2 \log N)$ and an execution complexity of $O(N \log N)$. The results of computational experiments with the algorithms show that these procedures can decrease the calculation time by several orders of magnitude compared with a conventional direct method of matrix-vector multiplication.
In this paper, we give a spectral approximation result for the Laplacian on submanifolds of Euclidean spaces with singularities by the $\epsilon$-neighborhood graph constructed from random points on the submanifold. Our convergence rate for the eigenvalue of the Laplacian is $O\left(\left(\log n/n\right)^{1/(m+2)}\right)$, where $m$ and $n$ denote the dimension of the manifold and the sample size, respectively.
This paper is concerned with the proportional fairness (PF) of the spectral efficiency (SE) maximization of uplinks in a cell-free (CF) massive multiple-input multiple-output (MIMO) system in which a large number of single-antenna access points (APs) connected to a central processing unit (CPU) serve many single-antenna users. To detect the user signals, the APs use matched filters based on the local channel state information while the CPU deploys receiver filters based on knowledge of channel statistics. We devise the maximization problem of the SE PF, which maximizes the sum of the logarithm of the achievable user rates, as a jointly nonconvex optimization problem of receiver filter coefficients and user power allocation subject to user power constraints. To handle the challenges associated with the nonconvexity of the formulated design problem, we develop an iterative algorithm by alternatively finding optimal filter coefficients at the CPU and transmit powers at the users. While the filter coefficient design is formulated as a generalized eigenvalue problem, the power allocation problem is addressed by a gradient projection (GP) approach. Simulation results show that the SE PF maximization not only offers approximately the achievable sum rates as compared to the sum-rate maximization but also provides an improved trade-off between the user rate fairness and the achievable sum rate.
Optimal symbol detection in multiple-input multiple-output (MIMO) systems is known to be an NP-hard problem. Recently, there has been a growing interest to get reasonably close to the optimal solution using neural networks while keeping the computational complexity in check. However, existing work based on deep learning shows that it is difficult to design a generic network that works well for a variety of channels. In this work, we propose a method that tries to strike a balance between symbol error rate (SER) performance and generality of channels. Our method is based on hypernetworks that generate the parameters of a neural network-based detector that works well on a specific channel. We propose a general framework by regularizing the training of the hypernetwork with some pre-trained instances of the channel-specific method. Through numerical experiments, we show that our proposed method yields high performance for a set of prespecified channel realizations while generalizing well to all channels drawn from a specific distribution.
The training process of neural networks usually optimize weights and bias parameters of linear transformations, while nonlinear activation functions are pre-specified and fixed. This work develops a systematic approach to constructing matrix activation functions whose entries are generalized from ReLU. The activation is based on matrix-vector multiplications using only scalar multiplications and comparisons. The proposed activation functions depend on parameters that are trained along with the weights and bias vectors. Neural networks based on this approach are simple and efficient and are shown to be robust in numerical experiments.
Self size-estimating feedforward network (SSFN) is a feedforward multilayer network. For the existing SSFN, a part of each weight matrix is trained using a layer-wise convex optimization approach (a supervised training), while the other part is chosen as a random matrix instance (an unsupervised training). In this article, the use of deterministic transforms instead of random matrix instances for the SSFN weight matrices is explored. The use of deterministic transforms provides a reduction in computational complexity. The use of several deterministic transforms is investigated, such as discrete cosine transform, Hadamard transform, Hartley transform, and wavelet transforms. The choice of a deterministic transform among a set of transforms is made in an unsupervised manner. To this end, two methods based on features' statistical parameters are developed. The proposed methods help to design a neural net where deterministic transforms can vary across its layers' weight matrices. The effectiveness of the proposed approach vis-a-vis the SSFN is illustrated for object classification tasks using several benchmark datasets.
A fast metasurface optimization strategy for finite-size metasurfaces modeled using integral equations is presented. The metasurfaces considered are constructed from finite patterned metallic claddings supported by grounded dielectric spacers. Integral equations are used to model the response of the metasurface to a known excitation and solved by Method of Moments. An accelerated gradient descent optimization algorithm is presented that enables the direct optimization of such metasurfaces. The gradient is normally calculated by solving the method of moments problem N+1 times where N is the number of homogenized elements in the metasurface. Since the calculation of each component of the N-dimensional gradient involves perturbing the moment method impedance matrix along one element of its diagonal and inverting the result, this numerical gradient calculation can be accelerated using the Woodbury Matrix Identity. The Woodbury Matrix Identity allows the inverse of the perturbed impedance matrix to be computed at a low cost by forming a rank-r correction to the inverse of the unperturbed impedance matrix. Timing diagrams show up to a 26.5 times improvement in algorithm times when the acceleration technique is applied. An example of a passive and lossless wide-angle reflecting metasurface designed using the accelerated optimization technique is reported.
In this paper, a generalized macromodeling approach is presented to simulate complex electromagnetic (EM) surfaces consisting of unit cells with connected conductors. Macromodels of each unit cell are produced by applying the equivalence principle on fictitious surfaces encapsulating them. Unit cells often consist of multiple dielectric layers and conductor traces, featuring multiscale structures. Challenges arise when a current-carrying conductor trace traverses the fictitious surface. Hence, a new method based on half Rao-Wilton-Glisson basis functions is proposed to accurately ensure the continuity of the surface currents and avoid singularities at the intersections. The accuracy of the proposed approach is validated by comparing the results with commercial solvers for different EM surfaces.
We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.
This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.
Since the invention of word2vec, the skip-gram model has significantly advanced the research of network embedding, such as the recent emergence of the DeepWalk, LINE, PTE, and node2vec approaches. In this work, we show that all of the aforementioned models with negative sampling can be unified into the matrix factorization framework with closed forms. Our analysis and proofs reveal that: (1) DeepWalk empirically produces a low-rank transformation of a network's normalized Laplacian matrix; (2) LINE, in theory, is a special case of DeepWalk when the size of vertices' context is set to one; (3) As an extension of LINE, PTE can be viewed as the joint factorization of multiple networks' Laplacians; (4) node2vec is factorizing a matrix related to the stationary distribution and transition probability tensor of a 2nd-order random walk. We further provide the theoretical connections between skip-gram based network embedding algorithms and the theory of graph Laplacian. Finally, we present the NetMF method as well as its approximation algorithm for computing network embedding. Our method offers significant improvements over DeepWalk and LINE for conventional network mining tasks. This work lays the theoretical foundation for skip-gram based network embedding methods, leading to a better understanding of latent network representation learning.