亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Rhetorical Role Labeling (RRL) of legal documents is pivotal for various downstream tasks such as summarization, semantic case search and argument mining. Existing approaches often overlook the varying difficulty levels inherent in legal document discourse styles and rhetorical roles. In this work, we propose HiCuLR, a hierarchical curriculum learning framework for RRL. It nests two curricula: Rhetorical Role-level Curriculum (RC) on the outer layer and Document-level Curriculum (DC) on the inner layer. DC categorizes documents based on their difficulty, utilizing metrics like deviation from a standard discourse structure and exposes the model to them in an easy-to-difficult fashion. RC progressively strengthens the model to discern coarse-to-fine-grained distinctions between rhetorical roles. Our experiments on four RRL datasets demonstrate the efficacy of HiCuLR, highlighting the complementary nature of DC and RC.

相關內容

DC:Distributed Computing。 Explanation:分布式計算。 Publisher:Springer。 SIT:

We propose a new variant of the Adam optimizer called MicroAdam that specifically minimizes memory overheads, while maintaining theoretical convergence guarantees. We achieve this by compressing the gradient information before it is fed into the optimizer state, thereby reducing its memory footprint significantly. We control the resulting compression error via a novel instance of the classical \emph{error feedback} mechanism from distributed optimization in which *the error correction information is itself compressed* to allow for practical memory gains. We prove that the resulting approach maintains theoretical convergence guarantees competitive to those of AMSGrad, while providing good practical performance. Specifically, we show that MicroAdam can be implemented efficiently on GPUs: on both million-scale (BERT) and billion-scale (LLaMA) models, MicroAdam provides practical convergence competitive to that of the uncompressed Adam baseline, with lower memory usage and similar running time. Our code is available at //github.com/IST-DASLab/MicroAdam.

We present the TRIAGE Benchmark, a novel machine ethics (ME) benchmark that tests LLMs' ability to make ethical decisions during mass casualty incidents. It uses real-world ethical dilemmas with clear solutions designed by medical professionals, offering a more realistic alternative to annotation-based benchmarks. TRIAGE incorporates various prompting styles to evaluate model performance across different contexts. Most models consistently outperformed random guessing, suggesting LLMs may support decision-making in triage scenarios. Neutral or factual scenario formulations led to the best performance, unlike other ME benchmarks where ethical reminders improved outcomes. Adversarial prompts reduced performance but not to random guessing levels. Open-source models made more morally serious errors, and general capability overall predicted better performance.

On facial expression datasets with complex and numerous feature types, where the significance and dominance of labeled features are difficult to predict, facial expression recognition(FER) encounters the challenges of inter-class similarity and intra-class variances, making it difficult to mine effective features. We aim to solely leverage the feature similarity among facial samples to address this. We introduce the Cross Similarity Attention (CSA), an input-output position-sensitive attention mechanism that harnesses feature similarity across different images to compute the corresponding global spatial attention. Based on this, we propose a four-branch circular framework, called Quadruplet Cross Similarity (QCS), to extract discriminative features from the same class and eliminate redundant ones from different classes synchronously to refine cleaner features. The symmetry of the network ensures balanced and stable training and reduces the amount of CSA interaction matrix. Contrastive residual distillation is utilized to transfer the information learned in the cross module back to the base network. The cross-attention module exists during training, and only one base branch is retained during inference. our proposed QCS model outperforms state-of-the-art methods on several popular FER datasets, without requiring additional landmark information or other extra training data. The code is available at //github.com/birdwcp/QCS.

Integration of diverse visual prompts like clicks, scribbles, and boxes in interactive image segmentation significantly facilitates users' interaction as well as improves interaction efficiency. However, existing studies primarily encode the position or pixel regions of prompts without considering the contextual areas around them, resulting in insufficient prompt feedback, which is not conducive to performance acceleration. To tackle this problem, this paper proposes a simple yet effective Probabilistic Visual Prompt Unified Transformer (PVPUFormer) for interactive image segmentation, which allows users to flexibly input diverse visual prompts with the probabilistic prompt encoding and feature post-processing to excavate sufficient and robust prompt features for performance boosting. Specifically, we first propose a Probabilistic Prompt-unified Encoder (PPuE) to generate a unified one-dimensional vector by exploring both prompt and non-prompt contextual information, offering richer feedback cues to accelerate performance improvement. On this basis, we further present a Prompt-to-Pixel Contrastive (P$^2$C) loss to accurately align both prompt and pixel features, bridging the representation gap between them to offer consistent feature representations for mask prediction. Moreover, our approach designs a Dual-cross Merging Attention (DMA) module to implement bidirectional feature interaction between image and prompt features, generating notable features for performance improvement. A comprehensive variety of experiments on several challenging datasets demonstrates that the proposed components achieve consistent improvements, yielding state-of-the-art interactive segmentation performance. Our code is available at //github.com/XuZhang1211/PVPUFormer.

Model library is an effective tool for improving the performance of single-model Out-of-Distribution (OoD) detector, mainly through model selection and detector fusion. However, existing methods in the literature do not provide uncertainty quantification for model selection results. Additionally, the model ensemble process primarily focuses on controlling the True Positive Rate (TPR) while neglecting the False Positive Rate (FPR). In this paper, we emphasize the significance of the proportion of models in the library that identify the test sample as an OoD sample. This proportion holds crucial information and directly influences the error rate of OoD detection.To address this, we propose inverting the commonly-used sequential p-value strategies. We define the rejection region initially and then estimate the error rate. Furthermore, we introduce a novel perspective from change-point detection and propose an approach for proportion estimation with automatic hyperparameter selection. We name the proposed approach as DOS-Storey-based Detector Ensemble (DSDE). Experimental results on CIFAR10 and CIFAR100 demonstrate the effectiveness of our approach in tackling OoD detection challenges. Specifically, the CIFAR10 experiments show that DSDE reduces the FPR from 11.07% to 3.31% compared to the top-performing single-model detector.

We introduce the idea of AquaFuse, a physics-based method for synthesizing waterbody properties in underwater imagery. We formulate a closed-form solution for waterbody fusion that facilitates realistic data augmentation and geometrically consistent underwater scene rendering. AquaFuse leverages the physical characteristics of light propagation underwater to synthesize the waterbody from one scene to the object contents of another. Unlike data-driven style transfer, AquaFuse preserves the depth consistency and object geometry in an input scene. We validate this unique feature by comprehensive experiments over diverse underwater scenes. We find that the AquaFused images preserve over 94% depth consistency and 90-95% structural similarity of the input scenes. We also demonstrate that it generates accurate 3D view synthesis by preserving object geometry while adapting to the inherent waterbody fusion process. AquaFuse opens up a new research direction in data augmentation by geometry-preserving style transfer for underwater imaging and robot vision applications.

Circuit representation learning is increasingly pivotal in Electronic Design Automation (EDA), serving various downstream tasks with enhanced model efficiency and accuracy. One notable work, DeepSeq, has pioneered sequential circuit learning by encoding temporal correlations. However, it suffers from significant limitations including prolonged execution times and architectural inefficiencies. To address these issues, we introduce DeepSeq2, a novel framework that enhances the learning of sequential circuits, by innovatively mapping it into three distinct embedding spaces-structure, function, and sequential behavior-allowing for a more nuanced representation that captures the inherent complexities of circuit dynamics. By employing an efficient Directed Acyclic Graph Neural Network (DAG-GNN) that circumvents the recursive propagation used in DeepSeq, DeepSeq2 significantly reduces execution times and improves model scalability. Moreover, DeepSeq2 incorporates a unique supervision mechanism that captures transitioning behaviors within circuits more effectively. DeepSeq2 sets a new benchmark in sequential circuit representation learning, outperforming prior works in power estimation and reliability analysis.

Sparse attention can effectively mitigate the significant memory and throughput demands of Large Language Models (LLMs) in long contexts. Existing methods typically employ a uniform sparse attention mask, applying the same sparse pattern across different attention heads and input lengths. However, this uniform approach fails to capture the diverse attention patterns inherent in LLMs, ignoring their distinct accuracy-latency trade-offs. To address this challenge, we propose the Mixture of Attention (MoA), which automatically tailors distinct sparse attention configurations to different heads and layers. MoA constructs and navigates a search space of various attention patterns and their scaling rules relative to input sequence lengths. It profiles the model, evaluates potential configurations, and pinpoints the optimal sparse attention compression plan. MoA adapts to varying input sizes, revealing that some attention heads expand their focus to accommodate longer sequences, while other heads consistently concentrate on fixed-length local contexts. Experiments show that MoA increases the effective context length by $3.9\times$ with the same average attention span, boosting retrieval accuracy by $1.5-7.1\times$ over the uniform-attention baseline across Vicuna-{7B,13B}, and Llama3-{8B,70B} models. Moreover, MoA narrows the capability gaps between sparse and dense models, reducing the maximum relative performance drop from $9\%-36\%$ to within $5\%$ across two long-context understanding benchmarks. MoA achieves a $1.2-1.4\times$ GPU memory reduction, boosting decode throughput by $6.6-8.2\times$ and $1.7-1.9\times$ compared to FlashAttention2 and vLLM, with minimal impact on performance. Our code is available at \url{//github.com/thu-nics/MoA}.

The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at //github.com/Wang-ML-Lab/llm-continual-learning-survey.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

北京阿比特科技有限公司