亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In many real-world multi-attribute decision-making (MADM) problems, mining the inter-relationships and possible hierarchical structures among the factors are considered to be one of the primary tasks. But, besides that, one major task is to determine an optimal strategy to work on the factors to enhance the effect on the goal attribute. This paper proposes two such strategies, namely parallel and hierarchical effort assignment, and propagation strategies. The concept of effort propagation through a strategy is formally defined and described in the paper. Both the parallel and hierarchical strategies are divided into sub-strategies based on whether the assignment of efforts to the factors is uniform or depends upon some appropriate heuristics related to the factors in the system. The adapted and discussed heuristics are the relative significance and effort propagability of the factors. The strategies are analyzed for a real-life case study regarding Indian high school administrative factors that play an important role in enhancing students' performance. Total effort propagation of around 7%-15% to the goal is seen across the proposed strategies given a total of 1 unit of effort to the directly accessible factors of the system. A comparative analysis is adapted to determine the optimal strategy among the proposed ones to enhance student performance most effectively. The highest effort propagation achieved in the work is approximately 14.4348%. The analysis in the paper establishes the necessity of research towards the direction of effort propagation analysis in case of decision-making problems.

相關內容

To simplify the generation process, several text-to-speech (TTS) systems implicitly learn intermediate latent representations instead of relying on predefined features (e.g., mel-spectrogram). However, their generation quality is unsatisfactory as these representations lack speech variances. In this paper, we improve TTS performance by adding \emph{prosody embeddings} to the latent representations. During training, we extract reference prosody embeddings from mel-spectrograms, and during inference, we estimate these embeddings from text using generative adversarial networks (GANs). Using GANs, we reliably estimate the prosody embeddings in a fast way, which have complex distributions due to the dynamic nature of speech. We also show that the prosody embeddings work as efficient features for learning a robust alignment between text and acoustic features. Our proposed model surpasses several publicly available models with less parameters and computational complexity in comparative experiments.

This study introduces an innovative Cumulative Link Modeling approach to monitor crop progress over large areas using remote sensing data. The models utilize the predictive attributes of calendar time, thermal time, and the Normalized Difference Vegetation Index (NDVI). Two distinct issues are tackled: real-time crop progress prediction, and completed season fitting. In the context of prediction, the study presents two model variations, the standard one based on the Multinomial distribution and a novel one based on the Multivariate Binomial distribution. In the context of fitting, random effects are incorporated to capture the inherent inter-seasonal variability, allowing the estimation of biological parameters that govern crop development and determine stage completion requirements. Theoretical properties in terms of consistency, asymptotic normality, and distribution-misspecification are reviewed. Model performance was evaluated on eight crops, namely corn, oats, sorghum, soybeans, winter wheat, alfalfa, dry beans, and millet, using in-situ data from Nebraska, USA, spanning a 20-year period. The results demonstrate the wide applicability of this approach to different crops, providing real-time predictions of crop progress worldwide, solely utilizing open-access data. To facilitate implementation, an ecosystem of R packages has been developed and made publicly accessible under the name Ages of Man.

We prove the first unconditional consistency result for superpolynomial circuit lower bounds with a relatively strong theory of bounded arithmetic. Namely, we show that the theory V$^0_2$ is consistent with the conjecture that NEXP $\not\subseteq$ P/poly, i.e., some problem that is solvable in non-deterministic exponential time does not have polynomial size circuits. We suggest this is the best currently available evidence for the truth of the conjecture. The same techniques establish the same results with NEXP replaced by the class of problems that are decidable in non-deterministic barely superpolynomial time such as NTIME$(n^{O(\log\log\log n)})$. Additionally, we establish a magnification result on the hardness of proving circuit lower bounds.

Current prevailing Video Object Segmentation (VOS) methods usually perform dense matching between the current and reference frames after extracting their features. One on hand, the decoupled modeling restricts the targets information propagation only at high-level feature space. On the other hand, the pixel-wise matching leads to a lack of holistic understanding of the targets. To overcome these issues, we propose a unified VOS framework, coined as JointFormer, for joint modeling the three elements of feature, correspondence, and a compressed memory. The core design is the Joint Block, utilizing the flexibility of attention to simultaneously extract feature and propagate the targets information to the current tokens and the compressed memory token. This scheme allows to perform extensive information propagation and discriminative feature learning. To incorporate the long-term temporal targets information, we also devise a customized online updating mechanism for the compressed memory token, which can prompt the information flow along the temporal dimension and thus improve the global modeling capability. Under the design, our method achieves a new state-of-art performance on DAVIS 2017 val/test-dev (89.7% and 87.6%) and YouTube-VOS 2018/2019 val (87.0% and 87.0%) benchmarks, outperforming existing works by a large margin.

The recent advancements in Transformer-based Language Models have demonstrated significant potential in enhancing the multilingual capabilities of these models. The remarkable progress made in this domain not only applies to natural language tasks but also extends to the domain of programming languages. Despite the ability of these models to learn from multiple languages, evaluations typically focus on particular combinations of the same languages. In this study, we evaluate the similarity of programming languages by analyzing their representations using a CodeBERT-based model. Our experiments reveal that token representation in languages such as C++, Python, and Java exhibit proximity to one another, whereas the same tokens in languages such as Mathematica and R display significant dissimilarity. Our findings suggest that this phenomenon can potentially result in performance challenges when dealing with diverse languages. Thus, we recommend using our similarity measure to select a diverse set of programming languages when training and evaluating future models.

In learning-to-rank (LTR), optimizing only the relevance (or the expected ranking utility) can cause representational harm to certain categories of items. Moreover, if there is implicit bias in the relevance scores, LTR models may fail to optimize for true relevance. Previous works have proposed efficient algorithms to train stochastic ranking models that achieve fairness of exposure to the groups ex-ante (or, in expectation), which may not guarantee representation fairness to the groups ex-post, that is, after realizing a ranking from the stochastic ranking model. Typically, ex-post fairness is achieved by post-processing, but previous work does not train stochastic ranking models that are aware of this post-processing. In this paper, we propose a novel objective that maximizes expected relevance only over those rankings that satisfy given representation constraints to ensure ex-post fairness. Building upon recent work on an efficient sampler for ex-post group-fair rankings, we propose a group-fair Plackett-Luce model and show that it can be efficiently optimized for our objective in the LTR framework. Experiments on three real-world datasets show that our group-fair algorithm guarantees fairness alongside usually having better relevance compared to the LTR baselines. In addition, our algorithm also achieves better relevance than post-processing baselines, which also ensures ex-post fairness. Further, when implicit bias is injected into the training data, our algorithm typically outperforms existing LTR baselines in relevance.

Large Language Models (LLMs) present strong general capabilities, and a current compelling challenge is stimulating their specialized capabilities, such as machine translation, through low-cost instruction tuning. The standard instruction-following data is sequentially organized as the concatenation of an instruction, an input, and a response. As the attention mechanism of LLMs has limitations on local focus, LLMs tend to focus more on the words or sentences nearby at each position. This leads to a high risk of instruction forgetting during decoding. To alleviate the above issues, We propose SWIE (Segment-Weighted Instruction Embedding) and an instruction-following dataset OVERMISS. SWIE improves the model instruction understanding by adding a global instruction representation on the following input and response representations. OVERMISS improves model faithfulness by comparing over-translation and miss-translation results with the correct translation. We apply our methods to two main-stream open-source LLMs, BLOOM and LLaMA. The experimental results demonstrate significant improvements in translation performance with SWIE based on BLOOMZ-3b, particularly in zero-shot and long text translations due to reduced instruction forgetting risk. Additionally, OVERMISS outperforms the baseline in translation performance (e.g. an increase in BLEU scores from 0.69 to 3.12 and an average improvement of 0.48 percentage comet scores for LLaMA-7b) with further enhancements seen in models combining OVERMISS and SWIE (e.g. the BLUE scores increase up to 0.56 from English to German across three different backbones), and both exhibit improvements in the faithfulness metric based on word alignment.

We present novel, tight, convex relaxations for rotation and pose estimation problems that can guarantee global optimality via strong Lagrangian duality. Some such relaxations exist in the literature for specific problem setups that assume the matrix von Mises-Fisher distribution (a.k.a., matrix Langevin distribution or chordal distance) for isotropic rotational uncertainty. However, another common way to represent uncertainty for rotations and poses is to define anisotropic noise in the associated Lie algebra. Starting from a noise model based on the Cayley map, we define our estimation problems, convert them to Quadratically Constrained Quadratic Programs (QCQPs), then relax them to Semidefinite Programs (SDPs), which can be solved using standard interior-point optimization methods. We first show how to carry out basic rotation and pose averaging. We then turn to the more complex problem of trajectory estimation, which involves many pose variables with both individual and inter-pose measurements (or motion priors). Our contribution is to formulate SDP relaxations for all these problems, including the identification of sufficient redundant constraints to make them tight. We hope our results can add to the catalogue of useful estimation problems whose global optimality can be guaranteed.

The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

北京阿比特科技有限公司