A majority of researchers who develop design guidelines have WEIRD, adult perspectives. This means we may not have technology developed appropriately for people from non-WEIRD countries and children. We present five design recommendations to empower designers to consider diverse users' desires and perceptions of agents. For one, designers should consider the degree of task-orientation of agents appropriate to end-users' cultural perspectives. For another, designers should consider how competence, predictability, and integrity in agent-persona affects end-users' trust of agents. We developed recommendations following our study, which analyzed children and parents from WEIRD and non-WEIRD countries' perspectives on agents as they create them. We found different subsets of participants' perceptions differed. For instance, non-WEIRD and child perspectives emphasized agent artificiality, whereas WEIRD and parent perspectives emphasized human-likeness. Children also consistently felt agents were warmer and more human-like than parents did. Finally, participants generally trusted technology, including agents, more than people.
Metaverse is expected to emerge as a new paradigm for the next-generation Internet, providing fully immersive and personalised experiences to socialize, work, and play in self-sustaining and hyper-spatio-temporal virtual world(s). The advancements in different technologies like augmented reality, virtual reality, extended reality (XR), artificial intelligence (AI), and 5G/6G communication will be the key enablers behind the realization of AI-XR metaverse applications. While AI itself has many potential applications in the aforementioned technologies (e.g., avatar generation, network optimization, etc.), ensuring the security of AI in critical applications like AI-XR metaverse applications is profoundly crucial to avoid undesirable actions that could undermine users' privacy and safety, consequently putting their lives in danger. To this end, we attempt to analyze the security, privacy, and trustworthiness aspects associated with the use of various AI techniques in AI-XR metaverse applications. Specifically, we discuss numerous such challenges and present a taxonomy of potential solutions that could be leveraged to develop secure, private, robust, and trustworthy AI-XR applications. To highlight the real implications of AI-associated adversarial threats, we designed a metaverse-specific case study and analyzed it through the adversarial lens. Finally, we elaborate upon various open issues that require further research interest from the community.
Privacy preservation in Ride-Hailing Services (RHS) is intended to protect privacy of drivers and riders. pRide, published in IEEE Trans. Vehicular Technology 2021, is a prediction based privacy-preserving RHS protocol to match riders with an optimum driver. In the protocol, the Service Provider (SP) homomorphically computes Euclidean distances between encrypted locations of drivers and rider. Rider selects an optimum driver using decrypted distances augmented by a new-ride-emergence prediction. To improve the effectiveness of driver selection, the paper proposes an enhanced version where each driver gives encrypted distances to each corner of her grid. To thwart a rider from using these distances to launch an inference attack, the SP blinds these distances before sharing them with the rider. In this work, we propose a passive attack where an honest-but-curious adversary rider who makes a single ride request and receives the blinded distances from SP can recover the constants used to blind the distances. Using the unblinded distances, rider to driver distance and Google Nearest Road API, the adversary can obtain the precise locations of responding drivers. We conduct experiments with random on-road driver locations for four different cities. Our experiments show that we can determine the precise locations of at least 80% of the drivers participating in the enhanced pRide protocol.
In Federated Learning (FL), multiple clients collaborate to learn a shared model through a central server while keeping data decentralized. Personalized Federated Learning (PFL) further extends FL by learning a personalized model per client. In both FL and PFL, all clients participate in the training process and their labeled data are used for training. However, in reality, novel clients may wish to join a prediction service after it has been deployed, obtaining predictions for their own \textbf{unlabeled} data. Here, we introduce a new learning setup, On-Demand Unlabeled PFL (OD-PFL), where a system trained on a set of clients, needs to be later applied to novel unlabeled clients at inference time. We propose a novel approach to this problem, ODPFL-HN, which learns to produce a new model for the late-to-the-party client. Specifically, we train an encoder network that learns a representation for a client given its unlabeled data. That client representation is fed to a hypernetwork that generates a personalized model for that client. Evaluated on five benchmark datasets, we find that ODPFL-HN generalizes better than the current FL and PFL methods, especially when the novel client has a large shift from training clients. We also analyzed the generalization error for novel clients, and showed analytically and experimentally how novel clients can apply differential privacy.
In this paper we present a Reinforcement Learning environment that leverages agent cooperation and communication, aimed at detection, learning and ultimately penalizing betrayal patterns that emerge in the behavior of self-interested agents. We provide a description of game rules, along with interesting cases of betrayal and trade-offs that arise. Preliminary experimental investigations illustrate a) betrayal emergence, b) deceptive agents outperforming honest baselines and b) betrayal detection based on classification of behavioral features, which surpasses probabilistic detection baselines. Finally, we propose approaches for penalizing betrayal, list directions for future work and suggest interesting extensions of the environment towards capturing and exploring increasingly complex patterns of social interactions.
Independent learners are learning agents that naively employ single-agent learning algorithms in multi-agent systems, intentionally ignoring the effect of other strategic agents present in their environment. This paper studies $N$-player mean-field games from a decentralized learning perspective with two primary objectives: (i) to study the convergence properties of independent learners, and (ii) to identify structural properties of $N$-player mean-field games that can guide algorithm design. Toward the first objective, we study the learning iterates obtained by independent learners, and we use recent results from POMDP theory to show that these iterates converge under mild conditions. In particular, we consider four information structures corresponding to information at each agent: (1) global state + local action; (2) local state, mean-field state + local action; (3) local state, compressed mean-field state + local action; (4) local state with local action. We present a notion of subjective equilibrium suitable for the analysis of independent learners. Toward the second objective, we study a family of dynamical systems on the set of joint policies. The dynamical systems under consideration are subject to a so-called $\epsilon$-satisficing condition: agents who are subjectively $\epsilon$-best-responding at a given joint policy do not change their policy. We establish a useful structural property relating to such dynamical systems. Finally, we develop an independent learning algorithm for $N$-player mean-field games that drives play to subjective $\epsilon$-equilibrium under self-play, exploiting the aforementioned structural properties to guarantee convergence of policies. Notably, we avoid requiring agents to follow the same policy (via a representative agent) during the learning process, which has been the typical approach in the existing literature on learning for mean-field games.
Accurate wind turbine power curve models, which translate ambient conditions into turbine power output, are crucial for wind energy to scale and fulfil its proposed role in the global energy transition. Machine learning methods, in particular deep neural networks (DNNs), have shown significant advantages over parametric, physics-informed power curve modelling approaches. Nevertheless, they are often criticised as opaque black boxes with no physical understanding of the system they model, which hinders their application in practice. We apply Shapley values, a popular explainable artificial intelligence (XAI) method, to, for the first time, uncover and validate the strategies learned by DNNs from operational wind turbine data. Our findings show that the trend towards ever larger model architectures, driven by the focus on test-set performance, can result in physically implausible model strategies, similar to the Clever Hans effect observed in classification. We, therefore, call for a more prominent role of XAI methods in model selection and additionally offer a practical strategy to use model explanations for wind turbine condition monitoring.
One of the key challenges in decentralized and federated learning is to design algorithms that efficiently deal with highly heterogeneous data distributions across agents. In this paper, we revisit the analysis of the popular Decentralized Stochastic Gradient Descent algorithm (D-SGD) under data heterogeneity. We exhibit the key role played by a new quantity, called neighborhood heterogeneity, on the convergence rate of D-SGD. By coupling the communication topology and the heterogeneity, our analysis sheds light on the poorly understood interplay between these two concepts. We then argue that neighborhood heterogeneity provides a natural criterion to learn data-dependent topologies that reduce (and can even eliminate) the otherwise detrimental effect of data heterogeneity on the convergence time of D-SGD. For the important case of classification with label skew, we formulate the problem of learning such a good topology as a tractable optimization problem that we solve with a Frank-Wolfe algorithm. As illustrated over a set of simulated and real-world experiments, our approach provides a principled way to design a sparse topology that balances the convergence speed and the per-iteration communication costs of D-SGD under data heterogeneity.
Users today expect more security from services that handle their data. In addition to traditional data privacy and integrity requirements, they expect transparency, i.e., that the service's processing of the data is verifiable by users and trusted auditors. Our goal is to build a multi-user system that provides data privacy, integrity, and transparency for a large number of operations, while achieving practical performance. To this end, we first identify the limitations of existing approaches that use authenticated data structures. We find that they fall into two categories: 1) those that hide each user's data from other users, but have a limited range of verifiable operations (e.g., CONIKS, Merkle2, and Proofs of Liabilities), and 2) those that support a wide range of verifiable operations, but make all data publicly visible (e.g., IntegriDB and FalconDB). We then present TAP to address the above limitations. The key component of TAP is a novel tree data structure that supports efficient result verification, and relies on independent audits that use zero-knowledge range proofs to show that the tree is constructed correctly without revealing user data. TAP supports a broad range of verifiable operations, including quantiles and sample standard deviations. We conduct a comprehensive evaluation of TAP, and compare it against two state-of-the-art baselines, namely IntegriDB and Merkle2, showing that the system is practical at scale.
Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.
The core of information retrieval (IR) is to identify relevant information from large-scale resources and return it as a ranked list to respond to user's information need. Recently, the resurgence of deep learning has greatly advanced this field and leads to a hot topic named NeuIR (i.e., neural information retrieval), especially the paradigm of pre-training methods (PTMs). Owing to sophisticated pre-training objectives and huge model size, pre-trained models can learn universal language representations from massive textual data, which are beneficial to the ranking task of IR. Since there have been a large number of works dedicating to the application of PTMs in IR, we believe it is the right time to summarize the current status, learn from existing methods, and gain some insights for future development. In this survey, we present an overview of PTMs applied in different components of IR system, including the retrieval component, the re-ranking component, and other components. In addition, we also introduce PTMs specifically designed for IR, and summarize available datasets as well as benchmark leaderboards. Moreover, we discuss some open challenges and envision some promising directions, with the hope of inspiring more works on these topics for future research.