This paper revisits two prominent adaptive filtering algorithms, namely recursive least squares (RLS) and equivariant adaptive source separation (EASI), through the lens of algorithm unrolling. Building upon the unrolling methodology, we introduce novel task-based deep learning frameworks, denoted as Deep RLS and Deep EASI. These architectures transform the iterations of the original algorithms into layers of a deep neural network, enabling efficient source signal estimation by leveraging a training process. To further enhance performance, we propose training these deep unrolled networks utilizing a surrogate loss function grounded on Stein's unbiased risk estimator (SURE). Our empirical evaluations demonstrate that the Deep RLS and Deep EASI networks outperform their underlying algorithms. Moreover, the efficacy of SURE-based training in comparison to conventional mean squared error loss is highlighted by numerical experiments. The unleashed potential of SURE-based training in this paper sets a benchmark for future employment of SURE either for training purposes or as an evaluation metric for generalization performance of neural networks.
We give simply exponential lower bounds on the probabilities of a given strongly Rayleigh distribution, depending only on its expectation. This resolves a weak version of a problem left open by Karlin-Klein-Oveis Gharan in their recent breakthrough work on metric TSP, and this resolution leads to a minor improvement of their approximation factor for metric TSP. Our results also allow for a more streamlined analysis of the algorithm. To achieve these new bounds, we build upon the work of Gurvits-Leake on the use of the productization technique for bounding the capacity of a real stable polynomial. This technique allows one to reduce certain inequalities for real stable polynomials to products of affine linear forms, which have an underlying matrix structure. In this paper, we push this technique further by characterizing the worst-case polynomials via bipartitioned forests. This rigid combinatorial structure yields a clean induction argument, which implies our stronger bounds. In general, we believe the results of this paper will lead to further improvement and simplification of the analysis of various combinatorial and probabilistic bounds and algorithms.
Multi-agent cyberphysical systems enable new capabilities in efficiency, resilience, and security. The unique characteristics of these systems prompt a reevaluation of their security concepts, including their vulnerabilities, and mechanisms to mitigate these vulnerabilities. This survey paper examines how advancement in wireless networking, coupled with the sensing and computing in cyberphysical systems, can foster novel security capabilities. This study delves into three main themes related to securing multi-agent cyberphysical systems. First, we discuss the threats that are particularly relevant to multi-agent cyberphysical systems given the potential lack of trust between agents. Second, we present prospects for sensing, contextual awareness, and authentication, enabling the inference and measurement of ``inter-agent trust" for these systems. Third, we elaborate on the application of quantifiable trust notions to enable ``resilient coordination," where ``resilient" signifies sustained functionality amid attacks on multiagent cyberphysical systems. We refer to the capability of cyberphysical systems to self-organize, and coordinate to achieve a task as autonomy. This survey unveils the cyberphysical character of future interconnected systems as a pivotal catalyst for realizing robust, trust-centered autonomy in tomorrow's world.
This paper provides the first large-scale data-driven analysis to evaluate the predictive power of different attributes for assessing risk of cyberattack data breaches. Furthermore, motivated by rapid increase in third party enabled cyberattacks, the paper provides the first quantitative empirical evidence that digital supply-chain attributes are significant predictors of enterprise cyber risk. The paper leverages outside-in cyber risk scores that aim to capture the quality of the enterprise internal cybersecurity management, but augment these with supply chain features that are inspired by observed third party cyberattack scenarios, as well as concepts from network science research. The main quantitative result of the paper is to show that supply chain network features add significant detection power to predicting enterprise cyber risk, relative to merely using enterprise-only attributes. Particularly, compared to a base model that relies only on internal enterprise features, the supply chain network features improve the out-of-sample AUC by 2.3\%. Given that each cyber data breach is a low probability high impact risk event, these improvements in the prediction power have significant value. Additionally, the model highlights several cybersecurity risk drivers related to third party cyberattack and breach mechanisms and provides important insights as to what interventions might be effective to mitigate these risks.
This paper studies optimal estimation of large-dimensional nonlinear factor models. The key challenge is that the observed variables are possibly nonlinear functions of some latent variables where the functional forms are left unspecified. A local principal component analysis method is proposed to estimate the factor structure and recover information on latent variables and latent functions, which combines $K$-nearest neighbors matching and principal component analysis. Large-sample properties are established, including a sharp bound on the matching discrepancy of nearest neighbors, sup-norm error bounds for estimated local factors and factor loadings, and the uniform convergence rate of the factor structure estimator. Under mild conditions our estimator of the latent factor structure can achieve the optimal rate of uniform convergence for nonparametric regression. The method is illustrated with a Monte Carlo experiment and an empirical application studying the effect of tax cuts on economic growth.
We design an additive approximation scheme for estimating the cost of the min-weight bipartite matching problem: given a bipartite graph with non-negative edge costs and $\varepsilon > 0$, our algorithm estimates the cost of matching all but $O(\varepsilon)$-fraction of the vertices in truly subquadratic time $O(n^{2-\delta(\varepsilon)})$. Our algorithm has a natural interpretation for computing the Earth Mover's Distance (EMD), up to a $\varepsilon$-additive approximation. Notably, we make no assumptions about the underlying metric (more generally, the costs do not have to satisfy triangle inequality). Note that compared to the size of the instance (an arbitrary $n \times n$ cost matrix), our algorithm runs in {\em sublinear} time. Our algorithm can approximate a slightly more general problem: max-cardinality bipartite matching with a knapsack constraint, where the goal is to maximize the number of vertices that can be matched up to a total cost $B$.
This paper investigates a large unitarily invariant system (LUIS) involving a unitarily invariant sensing matrix, an arbitrarily fixed signal distribution, and forward error control (FEC) coding. A universal Gram-Schmidt orthogonalization is considered for constructing orthogonal approximate message passing (OAMP), enabling its applicability to a wide range of prototypes without the constraint of differentiability. We develop two single-input-single-output variational transfer functions for OAMP with Lipschitz continuous local estimators, facilitating an analysis of achievable rates. Furthermore, when the state evolution of OAMP has a unique fixed point, we reveal that OAMP can achieve the constrained capacity predicted by the replica method of LUIS based on matched FEC coding, regardless of the signal distribution. The replica method is rigorously validated for LUIS with Gaussian signaling and certain sub-classes of LUIS with arbitrary signal distributions. Several area properties are established based on the variational transfer functions of OAMP. Meanwhile, we present a replica constrained capacity-achieving coding principle for LUIS. This principle serves as the basis for optimizing irregular low-density parity-check (LDPC) codes specifically tailored for binary signaling in our simulation results. The performance of OAMP with these optimized codes exhibits a remarkable improvement over the unoptimized codes and even surpasses the well-known Turbo-LMMSE algorithm. For quadrature phase-shift keying (QPSK) modulation, we observe bit error rates (BER) performance near the replica constrained capacity across diverse channel conditions.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
This paper introduces a new fundamental characteristic, \ie, the dynamic range, from real-world metric tools to deep visual recognition. In metrology, the dynamic range is a basic quality of a metric tool, indicating its flexibility to accommodate various scales. Larger dynamic range offers higher flexibility. In visual recognition, the multiple scale problem also exist. Different visual concepts may have different semantic scales. For example, ``Animal'' and ``Plants'' have a large semantic scale while ``Elk'' has a much smaller one. Under a small semantic scale, two different elks may look quite \emph{different} to each other . However, under a large semantic scale (\eg, animals and plants), these two elks should be measured as being \emph{similar}. %We argue that such flexibility is also important for deep metric learning, because different visual concepts indeed correspond to different semantic scales. Introducing the dynamic range to deep metric learning, we get a novel computer vision task, \ie, the Dynamic Metric Learning. It aims to learn a scalable metric space to accommodate visual concepts across multiple semantic scales. Based on three types of images, \emph{i.e.}, vehicle, animal and online products, we construct three datasets for Dynamic Metric Learning. We benchmark these datasets with popular deep metric learning methods and find Dynamic Metric Learning to be very challenging. The major difficulty lies in a conflict between different scales: the discriminative ability under a small scale usually compromises the discriminative ability under a large one, and vice versa. As a minor contribution, we propose Cross-Scale Learning (CSL) to alleviate such conflict. We show that CSL consistently improves the baseline on all the three datasets. The datasets and the code will be publicly available at //github.com/SupetZYK/DynamicMetricLearning.
The difficulty of deploying various deep learning (DL) models on diverse DL hardwares has boosted the research and development of DL compilers in the community. Several DL compilers have been proposed from both industry and academia such as Tensorflow XLA and TVM. Similarly, the DL compilers take the DL models described in different DL frameworks as input, and then generate optimized codes for diverse DL hardwares as output. However, none of the existing survey has analyzed the unique design of the DL compilers comprehensively. In this paper, we perform a comprehensive survey of existing DL compilers by dissecting the commonly adopted design in details, with emphasis on the DL oriented multi-level IRs, and frontend/backend optimizations. Specifically, we provide a comprehensive comparison among existing DL compilers from various aspects. In addition, we present detailed analysis of the multi-level IR design and compiler optimization techniques. Finally, several insights are highlighted as the potential research directions of DL compiler. This is the first survey paper focusing on the unique design of DL compiler, which we hope can pave the road for future research towards the DL compiler.