亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem of revealing botnet activity through Domain Generation Algorithm (DGA) detection seems to be solved, considering that available deep learning classifiers achieve accuracies of over 99.9%. However, these classifiers provide a false sense of security as they are heavily biased and allow for trivial detection bypass. In this work, we leverage explainable artificial intelligence (XAI) methods to analyze the reasoning of deep learning classifiers and to systematically reveal such biases. We show that eliminating these biases from DGA classifiers considerably deteriorates their performance. Nevertheless we are able to design a context-aware detection system that is free of the identified biases and maintains the detection rate of state-of-the art deep learning classifiers. In this context, we propose a visual analysis system that helps to better understand a classifier's reasoning, thereby increasing trust in and transparency of detection methods and facilitating decision-making.

相關內容

Graph Neural Networks (GNNs) have improved unsupervised community detection of clustered nodes due to their ability to encode the dual dimensionality of the connectivity and feature information spaces of graphs. Identifying the latent communities has many practical applications from social networks to genomics. Current benchmarks of real world performance are confusing due to the variety of decisions influencing the evaluation of GNNs at this task. To address this, we propose a framework to establish a common evaluation protocol. We motivate and justify it by demonstrating the differences with and without the protocol. The W Randomness Coefficient is a metric proposed for assessing the consistency of algorithm rankings to quantify the reliability of results under the presence of randomness. We find that by ensuring the same evaluation criteria is followed, there may be significant differences from the reported performance of methods at this task, but a more complete evaluation and comparison of methods is possible.

Many constraint satisfaction and optimisation problems can be solved effectively by encoding them as instances of the Boolean Satisfiability problem (SAT). However, even the simplest types of constraints have many encodings in the literature with widely varying performance, and the problem of selecting suitable encodings for a given problem instance is not trivial. We explore the problem of selecting encodings for pseudo-Boolean and linear constraints using a supervised machine learning approach. We show that it is possible to select encodings effectively using a standard set of features for constraint problems; however we obtain better performance with a new set of features specifically designed for the pseudo-Boolean and linear constraints. In fact, we achieve good results when selecting encodings for unseen problem classes. Our results compare favourably to AutoFolio when using the same feature set. We discuss the relative importance of instance features to the task of selecting the best encodings, and compare several variations of the machine learning method.

The problem of correcting deletions and insertions has recently received significantly increased attention due to the DNA-based data storage technology, which suffers from deletions and insertions with extremely high probability. In this work, we study the problem of constructing non-binary burst-deletion/insertion correcting codes. Particularly, for the quaternary alphabet, our designed codes are suited for correcting a burst of deletions/insertions in DNA storage. Non-binary codes correcting a single deletion or insertion were introduced by Tenengolts [1984], and the results were extended to correct a fixed-length burst of deletions or insertions by Schoeny et al. [2017]. Recently, Wang et al. [2021] proposed constructions of non-binary codes of length n, correcting a burst of length at most two for q-ary alphabets with redundancy log n+O(log q log log n) bits, for arbitrary even q. The common idea in those constructions is to convert non-binary sequences into binary sequences, and the error decoding algorithms for the q-ary sequences are mainly based on the success of recovering the corresponding binary sequences, respectively. In this work, we look at a natural solution in which the error detection and correction algorithms are performed directly over q-ary sequences, and for certain cases, our codes provide a more efficient encoder with lower redundancy than the best-known encoder in the literature.

The Italian Digital Media Observatory (IDMO) project, part of a European initiative, focuses on countering disinformation and fake news. This report outlines contributions from Rai-CRITS to the project, including: (i) the creation of novel datasets for testing technologies (ii) development of an automatic model for categorizing Pagella Politica verdicts to facilitate broader analysis (iii) creation of an automatic model for recognizing textual entailment with exceptional accuracy on the FEVER dataset (iv) assessment using GPT-4 to identify textual entailmen (v) a game to raise awareness about fake news at national events.

Despite recent attention and exploration of depth for various tasks, it is still an unexplored modality for weakly-supervised object detection (WSOD). We propose an amplifier method for enhancing the performance of WSOD by integrating depth information. Our approach can be applied to any WSOD method based on multiple-instance learning, without necessitating additional annotations or inducing large computational expenses. Our proposed method employs a monocular depth estimation technique to obtain hallucinated depth information, which is then incorporated into a Siamese WSOD network using contrastive loss and fusion. By analyzing the relationship between language context and depth, we calculate depth priors to identify the bounding box proposals that may contain an object of interest. These depth priors are then utilized to update the list of pseudo ground-truth boxes, or adjust the confidence of per-box predictions. Our proposed method is evaluated on six datasets (COCO, PASCAL VOC, Conceptual Captions, Clipart1k, Watercolor2k, and Comic2k) by implementing it on top of two state-of-the-art WSOD methods, and we demonstrate a substantial enhancement in performance.

Deploying and testing cellular networks is a complex task due to the multitude of components involved-from the core to the Radio Access Network (RAN) and the User Equipments (UEs) -- all of which require integration and constant monitoring. Interference and the inherent randomness of the wireless channel further complicate the issue, posing additional challenges for repeatable and consistent testing. Consequently, both private and public cellular systems still rely heavily on human intervention for operations such as network reconfiguration, performance monitoring, and conducting end-to-end drive tests. This reliance significantly slows the pace of innovation in cellular systems. To address these challenges, we introduce 5G-CT, an automation framework based on OpenShift and the GitOps workflow, capable of deploying a softwarized end-to-end 5G and O-RAN-compliant system in a matter of seconds. We have deployed 5G-CT to test the integration and performance of popular open-source cellular stacks, including OpenAirInterface (OAI), and have collected months of over-the-air testing results without the need for human intervention. 5G-CT brings cloud-native Continuous Integration (CI) and Continuous Delivery (CD) to the RAN, effectively addressing the complexities associated with managing spectrum, radios, heterogeneous devices, and distributed components. Moreover, it provides much-needed automation and Continuous Testing (CT) for cellular networks.

We propose VQ-NeRF, a two-branch neural network model that incorporates Vector Quantization (VQ) to decompose and edit reflectance fields in 3D scenes. Conventional neural reflectance fields use only continuous representations to model 3D scenes, despite the fact that objects are typically composed of discrete materials in reality. This lack of discretization can result in noisy material decomposition and complicated material editing. To address these limitations, our model consists of a continuous branch and a discrete branch. The continuous branch follows the conventional pipeline to predict decomposed materials, while the discrete branch uses the VQ mechanism to quantize continuous materials into individual ones. By discretizing the materials, our model can reduce noise in the decomposition process and generate a segmentation map of discrete materials. Specific materials can be easily selected for further editing by clicking on the corresponding area of the segmentation outcomes. Additionally, we propose a dropout-based VQ codeword ranking strategy to predict the number of materials in a scene, which reduces redundancy in the material segmentation process. To improve usability, we also develop an interactive interface to further assist material editing. We evaluate our model on both computer-generated and real-world scenes, demonstrating its superior performance. To the best of our knowledge, our model is the first to enable discrete material editing in 3D scenes.

We consider the problem of supply chain data visibility in a blockchain-enabled supply chain network. Existing methods typically record transactions happening in a supply chain on a single blockchain and are limited in their ability to deal with different levels of data visibility. To address this limitation, we present FoodFresh -- a multi-chain consortium where organizations store immutable data on their blockchains. A decentralized hub coordinates the cross-chain exchange of digital assets among the heterogeneous blockchains. Mechanisms for enabling blockchain interoperability help to preserve the benefits of independent sovereign blockchains while allowing for data sharing across blockchain boundaries.

The network edge's role in Artificial Intelligence (AI) inference processing is rapidly expanding, driven by a plethora of applications seeking computational advantages. These applications strive for data-driven efficiency, leveraging robust AI capabilities and prioritizing real-time responsiveness. However, as demand grows, so does system complexity. The proliferation of AI inference accelerators showcases innovation but also underscores challenges, particularly the varied software and hardware configurations of these devices. This diversity, while advantageous for certain tasks, introduces hurdles in device integration and coordination. In this paper, our objectives are three-fold. Firstly, we outline the requirements and components of a framework that accommodates hardware diversity. Next, we assess the impact of device heterogeneity on AI inference performance, identifying strategies to optimize outcomes without compromising service quality. Lastly, we shed light on the prevailing challenges and opportunities in this domain, offering insights for both the research community and industry stakeholders.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

北京阿比特科技有限公司