亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Non-Independent and Identically Distributed (non- IID) data distribution among clients is considered as the key factor that degrades the performance of federated learning (FL). Several approaches to handle non-IID data such as personalized FL and federated multi-task learning (FMTL) are of great interest to research communities. In this work, first, we formulate the FMTL problem using Laplacian regularization to explicitly leverage the relationships among the models of clients for multi-task learning. Then, we introduce a new view of the FMTL problem, which in the first time shows that the formulated FMTL problem can be used for conventional FL and personalized FL. We also propose two algorithms FedU and dFedU to solve the formulated FMTL problem in communication-centralized and decentralized schemes, respectively. Theoretically, we prove that the convergence rates of both algorithms achieve linear speedup for strongly convex and sublinear speedup of order 1/2 for nonconvex objectives. Experimentally, we show that our algorithms outperform the algorithm FedAvg, FedProx, SCAFFOLD, and AFL in FL settings, MOCHA in FMTL settings, as well as pFedMe and Per-FedAvg in personalized FL settings.

相關內容

Cross-silo federated learning utilizes a few hundred reliable data silos with high-speed access links to jointly train a model. While this approach becomes a popular setting in federated learning, designing a robust topology to reduce the training time is still an open problem. In this paper, we present a new multigraph topology for cross-silo federated learning. We first construct the multigraph using the overlay graph. We then parse this multigraph into different simple graphs with isolated nodes. The existence of isolated nodes allows us to perform model aggregation without waiting for other nodes, hence reducing the training time. We further propose a new distributed learning algorithm to use with our multigraph topology. The intensive experiments on public datasets show that our proposed method significantly reduces the training time compared with recent state-of-the-art topologies while ensuring convergence and maintaining the model's accuracy.

Federated learning (FL) provides an effective paradigm to train machine learning models over distributed data with privacy protection. However, recent studies show that FL is subject to various security, privacy, and fairness threats due to the potentially malicious and heterogeneous local agents. For instance, it is vulnerable to local adversarial agents who only contribute low-quality data, with the goal of harming the performance of those with high-quality data. This kind of attack hence breaks existing definitions of fairness in FL that mainly focus on a certain notion of performance parity. In this work, we aim to address this limitation and propose a formal definition of fairness via agent-awareness for FL (FAA), which takes the heterogeneous data contributions of local agents into account. In addition, we propose a fair FL training algorithm based on agent clustering (FOCUS) to achieve FAA. Theoretically, we prove the convergence and optimality of FOCUS under mild conditions for linear models and general convex loss functions with bounded smoothness. We also prove that FOCUS always achieves higher fairness measured by FAA compared with standard FedAvg protocol under both linear models and general convex loss functions. Empirically, we evaluate FOCUS on four datasets, including synthetic data, images, and texts under different settings, and we show that FOCUS achieves significantly higher fairness based on FAA while maintaining similar or even higher prediction accuracy compared with FedAvg.

In Federated Learning (FL), a number of clients or devices collaborate to train a model without sharing their data. Models are optimized locally at each client and further communicated to a central hub for aggregation. While FL is an appealing decentralized training paradigm, heterogeneity among data from different clients can cause the local optimization to drift away from the global objective. In order to estimate and therefore remove this drift, variance reduction techniques have been incorporated into FL optimization recently. However, these approaches inaccurately estimate the clients' drift and ultimately fail to remove it properly. In this work, we propose an adaptive algorithm that accurately estimates drift across clients. In comparison to previous works, our approach necessitates less storage and communication bandwidth, as well as lower compute costs. Additionally, our proposed methodology induces stability by constraining the norm of estimates for client drift, making it more practical for large scale FL. Experimental findings demonstrate that the proposed algorithm converges significantly faster and achieves higher accuracy than the baselines across various FL benchmarks.

Deep operator learning has emerged as a promising tool for reduced-order modelling and PDE model discovery. Leveraging the expressive power of deep neural networks, especially in high dimensions, such methods learn the mapping between functional state variables. While proposed methods have assumed noise only in the dependent variables, experimental and numerical data for operator learning typically exhibit noise in the independent variables as well, since both variables represent signals that are subject to measurement error. In regression on scalar data, failure to account for noisy independent variables can lead to biased parameter estimates. With noisy independent variables, linear models fitted via ordinary least squares (OLS) will show attenuation bias, wherein the slope will be underestimated. In this work, we derive an analogue of attenuation bias for linear operator regression with white noise in both the independent and dependent variables. In the nonlinear setting, we computationally demonstrate underprediction of the action of the Burgers operator in the presence of noise in the independent variable. We propose error-in-variables (EiV) models for two operator regression methods, MOR-Physics and DeepONet, and demonstrate that these new models reduce bias in the presence of noisy independent variables for a variety of operator learning problems. Considering the Burgers operator in 1D and 2D, we demonstrate that EiV operator learning robustly recovers operators in high-noise regimes that defeat OLS operator learning. We also introduce an EiV model for time-evolving PDE discovery and show that OLS and EiV perform similarly in learning the Kuramoto-Sivashinsky evolution operator from corrupted data, suggesting that the effect of bias in OLS operator learning depends on the regularity of the target operator.

The ubiquity of microphone-enabled devices has lead to large amounts of unlabelled audio data being produced at the edge. The integration of self-supervised learning (SSL) and federated learning (FL) into one coherent system can potentially offer data privacy guarantees while also advancing the quality and robustness of speech representations. In this paper, we provide a first-of-its-kind systematic study of the feasibility and complexities for training speech SSL models under FL scenarios from the perspective of algorithms, hardware, and systems limits. Despite the high potential of their combination, we find existing system constraints and algorithmic behaviour make SSL and FL systems nearly impossible to build today. Yet critically, our results indicate specific performance bottlenecks and research opportunities that would allow this situation to be reversed. While our analysis suggests that, given existing trends in hardware, hybrid SSL and FL speech systems will not be viable until 2027. We believe this study can act as a roadmap to accelerate work towards reaching this milestone much earlier.

Federated Learning has been recently proposed for distributed model training at the edge. The principle of this approach is to aggregate models learned on distributed clients to obtain a new more general "average" model (FedAvg). The resulting model is then redistributed to clients for further training. To date, the most popular federated learning algorithm uses coordinate-wise averaging of the model parameters for aggregation. In this paper, we carry out a complete general mathematical convergence analysis to evaluate aggregation strategies in a federated learning framework. From this, we derive novel aggregation algorithms which are able to modify their model architecture by differentiating client contributions according to the value of their losses. Moreover, we go beyond the assumptions introduced in theory, by evaluating the performance of these strategies and by comparing them with the one of FedAvg in classification tasks in both the IID and the Non-IID framework without additional hypothesis.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL from the perspective of algorithmic modeling, applications and theoretical analyses. For algorithmic modeling, we give a definition of MTL and then classify different MTL algorithms into five categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach and decomposition approach as well as discussing the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, we review online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works in this paper. Finally, we present theoretical analyses and discuss several future directions for MTL.

This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

北京阿比特科技有限公司