Semantic Communication (SC) is a novel paradigm for data transmission in 6G. However, there are several challenges posed when performing SC in 3D scenarios: 1) 3D semantic extraction; 2) Latent semantic redundancy; and 3) Uncertain channel estimation. To address these issues, we propose a Generative AI Model assisted 3D SC (GAM-3DSC) system. Firstly, we introduce a 3D Semantic Extractor (3DSE), which employs generative AI models, including Segment Anything Model (SAM) and Neural Radiance Field (NeRF), to extract key semantics from a 3D scenario based on user requirements. The extracted 3D semantics are represented as multi-perspective images of the goal-oriented 3D object. Then, we present an Adaptive Semantic Compression Model (ASCM) for encoding these multi-perspective images, in which we use a semantic encoder with two output heads to perform semantic encoding and mask redundant semantics in the latent semantic space, respectively. Next, we design a conditional Generative adversarial network and Diffusion model aided-Channel Estimation (GDCE) to estimate and refine the Channel State Information (CSI) of physical channels. Finally, simulation results demonstrate the advantages of the proposed GAM-3DSC system in effectively transmitting the goal-oriented 3D scenario.
Aspect Based Sentiment Analysis (ABSA) tasks involve the extraction of fine-grained sentiment tuples from sentences, aiming to discern the author's opinions. Conventional methodologies predominantly rely on supervised approaches; however, the efficacy of such methods diminishes in low-resource domains lacking labeled datasets since they often lack the ability to generalize across domains. To address this challenge, we propose a simple and novel unsupervised approach to extract opinion terms and the corresponding sentiment polarity for aspect terms in a sentence. Our experimental evaluations, conducted on four benchmark datasets, demonstrate compelling performance to extract the aspect oriented opinion words as well as assigning sentiment polarity. Additionally, unsupervised approaches for opinion word mining have not been explored and our work establishes a benchmark for the same.
Temperature plays a pivotal role in moderating label softness in the realm of knowledge distillation (KD). Traditional approaches often employ a static temperature throughout the KD process, which fails to address the nuanced complexities of samples with varying levels of difficulty and overlooks the distinct capabilities of different teacher-student pairings. This leads to a less-than-ideal transfer of knowledge. To improve the process of knowledge propagation, we proposed Dynamic Temperature Knowledge Distillation (DTKD) which introduces a dynamic, cooperative temperature control for both teacher and student models simultaneously within each training iterafion. In particular, we proposed "\textbf{sharpness}" as a metric to quantify the smoothness of a model's output distribution. By minimizing the sharpness difference between the teacher and the student, we can derive sample-specific temperatures for them respectively. Extensive experiments on CIFAR-100 and ImageNet-2012 demonstrate that DTKD performs comparably to leading KD techniques, with added robustness in Target Class KD and None-target Class KD scenarios.The code is available at //github.com/JinYu1998/DTKD.
Large Language Models (LLMs) demonstrate impressive performance in various downstream tasks. However, they may still generate incorrect responses in certain scenarios due to the knowledge deficiencies and the flawed pre-training data. Continual Learning (CL) is a commonly used method to address this issue. Traditional CL is task-oriented, using novel or factually accurate data to retrain LLMs from scratch. However, this method requires more task-related training data and incurs expensive training costs. To address this challenge, we propose the Continue Evolving from Mistakes (CEM) method, inspired by the 'summarize mistakes' learning skill, to achieve iterative refinement of LLMs. Specifically, the incorrect responses of LLMs indicate knowledge deficiencies related to the questions. Therefore, we collect corpora with these knowledge from multiple data sources and follow it up with iterative supplementary training for continuous, targeted knowledge updating and supplementation. Meanwhile, we developed two strategies to construct supplementary training sets to enhance the LLM's understanding of the corpus and prevent catastrophic forgetting. We conducted extensive experiments to validate the effectiveness of this CL method. In the best case, our method resulted in a 17.00\% improvement in the accuracy of the LLM.
Web caching is essential for the World Wide Web, saving processing power, bandwidth, and reducing latency. Many proxy caching solutions focus on buffering data from the main server, neglecting cacheable information meant for server writes. Existing systems addressing this issue are often intrusive, requiring modifications to the main application for integration. We identify opportunities for enhancement in conventional caching proxies. This paper explores, designs, and implements a potential prototype for such an application. Our focus is on harnessing a faster bulk-data-write approach compared to single-data-write within the context of relational databases. If a (upload) request matches a specified cacheable URL, then the data will be extracted and buffered on the local disk for later bulk-write. In contrast with already existing caching proxies, Squid, for example, in a similar uploading scenario, the request would simply get redirected, leaving out potential gains such as minimized processing power, lower server load, and bandwidth. After prototyping and testing the suggested application against Squid, concerning data uploads with 1, 100, 1.000, ..., and 100.000 requests, we consistently observed query execution improvements ranging from 5 to 9 times. This enhancement was achieved through buffering and bulk-writing the data, the extent of which depended on the specific test conditions.
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.
2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.
Technology ecosystems often undergo significant transformations as they mature. For example, telephony, the Internet, and PCs all started with a single provider, but in the United States each is now served by a competitive market that uses comprehensive and universal technology standards to provide compatibility. This white paper presents our view on how the cloud ecosystem, barely over fifteen years old, could evolve as it matures.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.
Graph Convolutional Networks (GCNs) have recently become the primary choice for learning from graph-structured data, superseding hash fingerprints in representing chemical compounds. However, GCNs lack the ability to take into account the ordering of node neighbors, even when there is a geometric interpretation of the graph vertices that provides an order based on their spatial positions. To remedy this issue, we propose Geometric Graph Convolutional Network (geo-GCN) which uses spatial features to efficiently learn from graphs that can be naturally located in space. Our contribution is threefold: we propose a GCN-inspired architecture which (i) leverages node positions, (ii) is a proper generalisation of both GCNs and Convolutional Neural Networks (CNNs), (iii) benefits from augmentation which further improves the performance and assures invariance with respect to the desired properties. Empirically, geo-GCN outperforms state-of-the-art graph-based methods on image classification and chemical tasks.