亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents the first sub-10$\mu$W, sub-0.1% total harmonic distortion (THD) sinusoidal current generator (CG) integrated circuit (IC) that is capable of 20kHz output for the bio-impedance (Bio-Z) sensing applications. To benefit from the ultra-low-power nature of near-threshold operation, a 9b pseudo-sine lookup table (LUT) is 3b $\Delta\Sigma$ modulated in the digital domain, thus linearity burden of the digital-to-analog converter (DAC) is avoided and only a 1.29$\mu$W of logic power is consumed, from a 0.5V supply and a 2.56MHz clock frequency. A half-period (HP) reset is introduced in the capacitive DAC, leading to around 30dB reduction of in-band noise by avoiding the sampling of data-dependent glitches and attenuating the kT/C noise and the non-idealities of reset switches (SW).

相關內容

DAC:Design Automation Conference。 Explanation:設計自動化會議。 Publisher:ACM。 SIT:

Conventional Task and Motion Planning (TAMP) approaches rely on manually crafted interfaces connecting symbolic task planning with continuous motion generation. These domain-specific and labor-intensive modules are limited in addressing emerging tasks in real-world settings. Here, we present LLM^3, a novel Large Language Model (LLM)-based TAMP framework featuring a domain-independent interface. Specifically, we leverage the powerful reasoning and planning capabilities of pre-trained LLMs to propose symbolic action sequences and select continuous action parameters for motion planning. Crucially, LLM^3 incorporates motion planning feed- back through prompting, allowing the LLM to iteratively refine its proposals by reasoning about motion failure. Consequently, LLM^3 interfaces between task planning and motion planning, alleviating the intricate design process of handling domain- specific messages between them. Through a series of simulations in a box-packing domain, we quantitatively demonstrate the effectiveness of LLM^3 in solving TAMP problems and the efficiency in selecting action parameters. Ablation studies un- derscore the significant contribution of motion failure reasoning to the success of LLM^3. Furthermore, we conduct qualitative experiments on a physical manipulator, demonstrating the practical applicability of our approach in real-world settings.

We study the sample complexity of learning an $\epsilon$-optimal policy in an average-reward Markov decision process (MDP) under a generative model. For weakly communicating MDPs, we establish the complexity bound $\tilde{O}(SA\frac{H}{\epsilon^2})$, where $H$ is the span of the bias function of the optimal policy and $SA$ is the cardinality of the state-action space. Our result is the first that is minimax optimal (up to log factors) in all parameters $S,A,H$ and $\epsilon$, improving on existing work that either assumes uniformly bounded mixing times for all policies or has suboptimal dependence on the parameters. We further investigate sample complexity in general (non-weakly-communicating) average-reward MDPs. We argue a new transient time parameter $B$ is necessary, establish an $\tilde{O}(SA\frac{B+H}{\epsilon^2})$ complexity bound, and prove a matching (up to log factors) minimax lower bound. Both results are based on reducing the average-reward MDP to a discounted MDP, which requires new ideas in the general setting. To establish the optimality of this reduction, we develop improved bounds for $\gamma$-discounted MDPs, showing that $\tilde{\Omega}\left(SA\frac{H}{(1-\gamma)^2\epsilon^2}\right)$ samples suffice to learn an $\epsilon$-optimal policy in weakly communicating MDPs under the regime that $\gamma\geq 1-1/H$, and $\tilde{\Omega}\left(SA\frac{B+H}{(1-\gamma)^2\epsilon^2}\right)$ samples suffice in general MDPs when $\gamma\geq 1-\frac{1}{B+H}$. Both these results circumvent the well-known lower bound of $\tilde{\Omega}\left(SA\frac{1}{(1-\gamma)^3\epsilon^2}\right)$ for arbitrary $\gamma$-discounted MDPs. Our analysis develops upper bounds on certain instance-dependent variance parameters in terms of the span and transient time parameters. The weakly communicating bounds are tighter than those based on the mixing time or diameter of the MDP and may be of broader use.

Based on the theory of homogeneous spaces we derive geometrically optimal edge attributes to be used within the flexible message-passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions $\mathbb{R}^3$, position and orientations $\mathbb{R}^3 {\times} S^2$, and the group $SE(3)$ itself. Among these, $\mathbb{R}^3 {\times} S^2$ is an optimal choice due to the ability to represent directional information, which $\mathbb{R}^3$ methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full $SE(3)$ group. We support this claim with state-of-the-art results -- in accuracy and speed -- on five different benchmarks in 2D and 3D, including interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models.

We consider a distributed setup for reinforcement learning, where each agent has a copy of the same Markov Decision Process but transitions are sampled from the corresponding Markov chain independently by each agent. We show that in this setting, we can achieve a linear speedup for TD($\lambda$), a family of popular methods for policy evaluation, in the sense that $N$ agents can evaluate a policy $N$ times faster provided the target accuracy is small enough. Notably, this speedup is achieved by ``one shot averaging,'' a procedure where the agents run TD($\lambda$) with Markov sampling independently and only average their results after the final step. This significantly reduces the amount of communication required to achieve a linear speedup relative to previous work.

We give a procedure for computing group-level $(\epsilon, \delta)$-DP guarantees for DP-SGD, when using Poisson sampling or fixed batch size sampling. Up to discretization errors in the implementation, the DP guarantees computed by this procedure are tight (assuming we release every intermediate iterate).

Given an undirected graph $G$, a quasi-clique is a subgraph of $G$ whose density is at least $\gamma$ $(0 < \gamma \leq 1)$. Two optimization problems can be defined for quasi-cliques: the Maximum Quasi-Clique (MQC) Problem, which finds a quasi-clique with maximum vertex cardinality, and the Densest $k$-Subgraph (DKS) Problem, which finds the densest subgraph given a fixed cardinality constraint. Most existing approaches to solve both problems often disregard the requirement of connectedness, which may lead to solutions containing isolated components that are meaningless for many real-life applications. To address this issue, we propose two flow-based connectedness constraints to be integrated into known Mixed-Integer Linear Programming (MILP) formulations for either MQC or DKS problems. We compare the performance of MILP formulations enhanced with our connectedness constraints in terms of both running time and number of solved instances against existing approaches that ensure quasi-clique connectedness. Experimental results demonstrate that our constraints are quite competitive, making them valuable for practical applications requiring connectedness.

Despite significant progress in Text-to-Image (T2I) generative models, even lengthy and complex text descriptions still struggle to convey detailed controls. In contrast, Layout-to-Image (L2I) generation, aiming to generate realistic and complex scene images from user-specified layouts, has risen to prominence. However, existing methods transform layout information into tokens or RGB images for conditional control in the generative process, leading to insufficient spatial and semantic controllability of individual instances. To address these limitations, we propose a novel Spatial-Semantic Map Guided (SSMG) diffusion model that adopts the feature map, derived from the layout, as guidance. Owing to rich spatial and semantic information encapsulated in well-designed feature maps, SSMG achieves superior generation quality with sufficient spatial and semantic controllability compared to previous works. Additionally, we propose the Relation-Sensitive Attention (RSA) and Location-Sensitive Attention (LSA) mechanisms. The former aims to model the relationships among multiple objects within scenes while the latter is designed to heighten the model's sensitivity to the spatial information embedded in the guidance. Extensive experiments demonstrate that SSMG achieves highly promising results, setting a new state-of-the-art across a range of metrics encompassing fidelity, diversity, and controllability.

We propose an operator learning approach to accelerate geometric Markov chain Monte Carlo (MCMC) for solving infinite-dimensional nonlinear Bayesian inverse problems. While geometric MCMC employs high-quality proposals that adapt to posterior local geometry, it requires computing local gradient and Hessian information of the log-likelihood, incurring a high cost when the parameter-to-observable (PtO) map is defined through expensive model simulations. We consider a delayed-acceptance geometric MCMC method driven by a neural operator surrogate of the PtO map, where the proposal is designed to exploit fast surrogate approximations of the log-likelihood and, simultaneously, its gradient and Hessian. To achieve a substantial speedup, the surrogate needs to be accurate in predicting both the observable and its parametric derivative (the derivative of the observable with respect to the parameter). Training such a surrogate via conventional operator learning using input--output samples often demands a prohibitively large number of model simulations. In this work, we present an extension of derivative-informed operator learning [O'Leary-Roseberry et al., J. Comput. Phys., 496 (2024)] using input--output--derivative training samples. Such a learning method leads to derivative-informed neural operator (DINO) surrogates that accurately predict the observable and its parametric derivative at a significantly lower training cost than the conventional method. Cost and error analysis for reduced basis DINO surrogates are provided. Numerical studies on PDE-constrained Bayesian inversion demonstrate that DINO-driven MCMC generates effective posterior samples 3--9 times faster than geometric MCMC and 60--97 times faster than prior geometry-based MCMC. Furthermore, the training cost of DINO surrogates breaks even after collecting merely 10--25 effective posterior samples compared to geometric MCMC.

Constructing small-sized coresets for various clustering problems in different metric spaces has attracted significant attention for the past decade. A central problem in the coreset literature is to understand what is the best possible coreset size for $(k,z)$-clustering in Euclidean space. While there has been significant progress in the problem, there is still a gap between the state-of-the-art upper and lower bounds. For instance, the best known upper bound for $k$-means ($z=2$) is $\min \{O(k^{3/2} \varepsilon^{-2}),O(k \varepsilon^{-4})\}$ [1,2], while the best known lower bound is $\Omega(k\varepsilon^{-2})$ [1]. In this paper, we make significant progress on both upper and lower bounds. For a large range of parameters (i.e., $\varepsilon, k$), we have a complete understanding of the optimal coreset size. In particular, we obtain the following results: (1) We present a new coreset lower bound $\Omega(k \varepsilon^{-z-2})$ for Euclidean $(k,z)$-clustering when $\varepsilon \geq \Omega(k^{-1/(z+2)})$. In view of the prior upper bound $\tilde{O}_z(k \varepsilon^{-z-2})$ [1], the bound is optimal. The new lower bound also implies improved lower bounds for $(k,z)$-clustering in doubling metrics. (2) For the upper bound, we provide efficient coreset construction algorithms for $(k,z)$-clustering with improved or optimal coreset sizes in several metric spaces. In particular, we provide an $\tilde{O}_z(k^{\frac{2z+2}{z+2}} \varepsilon^{-2})$-sized coreset, with a unfied analysis, for $(k,z)$-clustering for all $z\geq 1$ in Euclidean space. [1] Cohen-Addad, Larsen, Saulpic, Schwiegelshohn. STOC'22. [2] Cohen-Addad, Larsen, Saulpic, Schwiegelshohn, Sheikh-Omar, NeurIPS'22.

This paper introduces AL$\ell_0$CORE, a new form of probabilistic non-negative tensor decomposition. AL$\ell_0$CORE is a Tucker decomposition where the number of non-zero elements (i.e., the $\ell_0$-norm) of the core tensor is constrained to a preset value $Q$ much smaller than the size of the core. While the user dictates the total budget $Q$, the locations and values of the non-zero elements are latent variables and allocated across the core tensor during inference. AL$\ell_0$CORE -- i.e., $allo$cated $\ell_0$-$co$nstrained $core$-- thus enjoys both the computational tractability of CP decomposition and the qualitatively appealing latent structure of Tucker. In a suite of real-data experiments, we demonstrate that AL$\ell_0$CORE typically requires only tiny fractions (e.g.,~1%) of the full core to achieve the same results as full Tucker decomposition at only a correspondingly tiny fraction of the cost.

北京阿比特科技有限公司