亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite significant progress in Text-to-Image (T2I) generative models, even lengthy and complex text descriptions still struggle to convey detailed controls. In contrast, Layout-to-Image (L2I) generation, aiming to generate realistic and complex scene images from user-specified layouts, has risen to prominence. However, existing methods transform layout information into tokens or RGB images for conditional control in the generative process, leading to insufficient spatial and semantic controllability of individual instances. To address these limitations, we propose a novel Spatial-Semantic Map Guided (SSMG) diffusion model that adopts the feature map, derived from the layout, as guidance. Owing to rich spatial and semantic information encapsulated in well-designed feature maps, SSMG achieves superior generation quality with sufficient spatial and semantic controllability compared to previous works. Additionally, we propose the Relation-Sensitive Attention (RSA) and Location-Sensitive Attention (LSA) mechanisms. The former aims to model the relationships among multiple objects within scenes while the latter is designed to heighten the model's sensitivity to the spatial information embedded in the guidance. Extensive experiments demonstrate that SSMG achieves highly promising results, setting a new state-of-the-art across a range of metrics encompassing fidelity, diversity, and controllability.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Adobe Flash · MoDELS · Learning · 線性模型 ·
2024 年 4 月 25 日

We present LearnedFTL, a new on-demand page-level flash translation layer (FTL) design, which employs learned indexes to improve the address translation efficiency of flash-based SSDs. The first of its kind, it reduces the number of double reads induced by address translation in random read accesses. LearnedFTL proposes three key techniques: an in-place-update linear model to build learned indexes efficiently, a virtual PPN representation to obtain contiguous PPNs for sorted LPNs, and a group-based allocation and model training via GC/rewrite strategy to reduce the training overhead. By tightly integrating the aforementioned key techniques, LearnedFTL considerably speeds up address translation while reducing the number of flash read accesses caused by the address translation. Our extensive experiments on a FEMU-based prototype show that LearnedFTL can reduce up to 55.5\% address translation-induced double reads. As a result, LearnedFTL reduces the P99 tail latency by 2.9$\times$ $\sim$ 12.2$\times$ with an average of 5.5$\times$ and 8.2$\times$ compared to the state-of-the-art TPFTL and LeaFTL schemes, respectively.

Vision-Language Models (VLMs), such as CLIP, exhibit strong image-text comprehension abilities, facilitating advances in several downstream tasks such as zero-shot image classification, image-text retrieval, and text-to-image generation. However, the compositional reasoning abilities of existing VLMs remains subpar. The root of this limitation lies in the inadequate alignment between the images and captions in the pretraining datasets. Additionally, the current contrastive learning objective fails to focus on fine-grained grounding components like relations, actions, and attributes, resulting in "bag-of-words" representations. We introduce a simple and effective method to improve compositional reasoning in VLMs. Our method better leverages available datasets by refining and expanding the standard image-text contrastive learning framework. Our approach does not require specific annotations and does not incur extra parameters. When integrated with CLIP, our technique yields notable improvement over state-of-the-art baselines across five vision-language compositional benchmarks. We open-source our code at //github.com/lezhang7/Enhance-FineGrained.

Pre-trained large text-to-image (T2I) models with an appropriate text prompt has attracted growing interests in customized images generation field. However, catastrophic forgetting issue make it hard to continually synthesize new user-provided styles while retaining the satisfying results amongst learned styles. In this paper, we propose MuseumMaker, a method that enables the synthesis of images by following a set of customized styles in a never-end manner, and gradually accumulate these creative artistic works as a Museum. When facing with a new customization style, we develop a style distillation loss module to transfer the style of the whole dataset into generation of images. It can minimize the learning biases caused by content of images, and address the catastrophic overfitting issue induced by few-shot images. To deal with catastrophic forgetting amongst past learned styles, we devise a dual regularization for shared-LoRA module to optimize the direction of model update, which could regularize the diffusion model from both weight and feature aspects, respectively. Meanwhile, a unique token embedding corresponding to this new style is learned by a task-wise token learning module, which could preserve historical knowledge from past styles with the limitation of LoRA parameter quantity. As any new user-provided style come, our MuseumMaker can capture the nuances of the new styles while maintaining the details of learned styles. Experimental results on diverse style datasets validate the effectiveness of our proposed MuseumMaker method, showcasing its robustness and versatility across various scenarios.

Revolutionary advancements in text-to-image models have unlocked new dimensions for sophisticated content creation, e.g., text-conditioned image editing, allowing us to edit the diverse images that convey highly complex visual concepts according to the textual guidance. Despite being promising, existing methods focus on texture- or non-rigid-based visual manipulation, which struggles to produce the fine-grained animation of smooth text-conditioned image morphing without fine-tuning, i.e., due to their highly unstructured latent space. In this paper, we introduce a tuning-free LLM-driven attention control framework, encapsulated by the progressive process of LLM planning, prompt-Aware editing, StablE animation geneRation, abbreviated as LASER. LASER employs a large language model (LLM) to refine coarse descriptions into detailed prompts, guiding pre-trained text-to-image models for subsequent image generation. We manipulate the model's spatial features and self-attention mechanisms to maintain animation integrity and enable seamless morphing directly from text prompts, eliminating the need for additional fine-tuning or annotations. Our meticulous control over spatial features and self-attention ensures structural consistency in the images. This paper presents a novel framework integrating LLMs with text-to-image models to create high-quality animations from a single text input. We also propose a Text-conditioned Image-to-Animation Benchmark to validate the effectiveness and efficacy of LASER. Extensive experiments demonstrate that LASER produces impressive, consistent, and efficient results in animation generation, positioning it as a powerful tool for advanced digital content creation.

Urbanization challenges underscore the necessity for effective satellite image-text retrieval methods to swiftly access specific information enriched with geographic semantics for urban applications. However, existing methods often overlook significant domain gaps across diverse urban landscapes, primarily focusing on enhancing retrieval performance within single domains. To tackle this issue, we present UrbanCross, a new framework for cross-domain satellite image-text retrieval. UrbanCross leverages a high-quality, cross-domain dataset enriched with extensive geo-tags from three countries to highlight domain diversity. It employs the Large Multimodal Model (LMM) for textual refinement and the Segment Anything Model (SAM) for visual augmentation, achieving a fine-grained alignment of images, segments and texts, yielding a 10% improvement in retrieval performance. Additionally, UrbanCross incorporates an adaptive curriculum-based source sampler and a weighted adversarial cross-domain fine-tuning module, progressively enhancing adaptability across various domains. Extensive experiments confirm UrbanCross's superior efficiency in retrieval and adaptation to new urban environments, demonstrating an average performance increase of 15% over its version without domain adaptation mechanisms, effectively bridging the domain gap.

The arrival of Sora marks a new era for text-to-video diffusion models, bringing significant advancements in video generation and potential applications. However, Sora, along with other text-to-video diffusion models, is highly reliant on prompts, and there is no publicly available dataset that features a study of text-to-video prompts. In this paper, we introduce VidProM, the first large-scale dataset comprising 1.67 Million unique text-to-Video Prompts from real users. Additionally, this dataset includes 6.69 million videos generated by four state-of-the-art diffusion models, alongside some related data. We initially discuss the curation of this large-scale dataset, a process that is both time-consuming and costly. Subsequently, we underscore the need for a new prompt dataset specifically designed for text-to-video generation by illustrating how VidProM differs from DiffusionDB, a large-scale prompt-gallery dataset for image generation. Our extensive and diverse dataset also opens up many exciting new research areas. For instance, we suggest exploring text-to-video prompt engineering, efficient video generation, and video copy detection for diffusion models to develop better, more efficient, and safer models. The project (including the collected dataset VidProM and related code) is publicly available at //vidprom.github.io under the CC-BY-NC 4.0 License.

Current methods for 3D reconstruction and environmental mapping frequently face challenges in achieving high precision, highlighting the need for practical and effective solutions. In response to this issue, our study introduces FlyNeRF, a system integrating Neural Radiance Fields (NeRF) with drone-based data acquisition for high-quality 3D reconstruction. Utilizing unmanned aerial vehicle (UAV) for capturing images and corresponding spatial coordinates, the obtained data is subsequently used for the initial NeRF-based 3D reconstruction of the environment. Further evaluation of the reconstruction render quality is accomplished by the image evaluation neural network developed within the scope of our system. According to the results of the image evaluation module, an autonomous algorithm determines the position for additional image capture, thereby improving the reconstruction quality. The neural network introduced for render quality assessment demonstrates an accuracy of 97%. Furthermore, our adaptive methodology enhances the overall reconstruction quality, resulting in an average improvement of 2.5 dB in Peak Signal-to-Noise Ratio (PSNR) for the 10% quantile. The FlyNeRF demonstrates promising results, offering advancements in such fields as environmental monitoring, surveillance, and digital twins, where high-fidelity 3D reconstructions are crucial.

Retrieval-Augmented Generation (RAG) has shown significant improvements in various natural language processing tasks by integrating the strengths of large language models (LLMs) and external knowledge databases. However, RAG introduces long sequence generation and leads to high computation and memory costs. We propose Thoth, a novel multilevel dynamic caching system tailored for RAG. Our analysis benchmarks current RAG systems, pinpointing the performance bottleneck (i.e., long sequence due to knowledge injection) and optimization opportunities (i.e., caching knowledge's intermediate states). Based on these insights, we design Thoth, which organizes the intermediate states of retrieved knowledge in a knowledge tree and caches them in the GPU and host memory hierarchy. Thoth proposes a replacement policy that is aware of LLM inference characteristics and RAG retrieval patterns. It also dynamically overlaps the retrieval and inference steps to minimize the end-to-end latency. We implement Thoth and evaluate it on vLLM, a state-of-the-art LLM inference system and Faiss, a state-of-the-art vector database. The experimental results show that Thoth reduces the time to first token (TTFT) by up to 4x and improves the throughput by up to 2.1x compared to vLLM integrated with Faiss.

The burgeoning landscape of text-to-image models, exemplified by innovations such as Midjourney and DALLE 3, has revolutionized content creation across diverse sectors. However, these advancements bring forth critical ethical concerns, particularly with the misuse of open-source models to generate content that violates societal norms. Addressing this, we introduce Ethical-Lens, a framework designed to facilitate the value-aligned usage of text-to-image tools without necessitating internal model revision. Ethical-Lens ensures value alignment in text-to-image models across toxicity and bias dimensions by refining user commands and rectifying model outputs. Systematic evaluation metrics, combining GPT4-V, HEIM, and FairFace scores, assess alignment capability. Our experiments reveal that Ethical-Lens enhances alignment capabilities to levels comparable with or superior to commercial models like DALLE 3, ensuring user-generated content adheres to ethical standards while maintaining image quality. This study indicates the potential of Ethical-Lens to ensure the sustainable development of open-source text-to-image tools and their beneficial integration into society. Our code is available at //github.com/yuzhu-cai/Ethical-Lens.

Most existing event extraction (EE) methods merely extract event arguments within the sentence scope. However, such sentence-level EE methods struggle to handle soaring amounts of documents from emerging applications, such as finance, legislation, health, etc., where event arguments always scatter across different sentences, and even multiple such event mentions frequently co-exist in the same document. To address these challenges, we propose a novel end-to-end model, Doc2EDAG, which can generate an entity-based directed acyclic graph to fulfill the document-level EE (DEE) effectively. Moreover, we reformalize a DEE task with the no-trigger-words design to ease the document-level event labeling. To demonstrate the effectiveness of Doc2EDAG, we build a large-scale real-world dataset consisting of Chinese financial announcements with the challenges mentioned above. Extensive experiments with comprehensive analyses illustrate the superiority of Doc2EDAG over state-of-the-art methods. Data and codes can be found at //github.com/dolphin-zs/Doc2EDAG.

北京阿比特科技有限公司