We propose and analyze exact and inexact regularized Newton-type methods for finding a global saddle point of \emph{convex-concave} unconstrained min-max optimization problems. Compared to first-order methods, our understanding of second-order methods for min-max optimization is relatively limited, as obtaining global rates of convergence with second-order information is much more involved. In this paper, we examine how second-order information can be used to speed up extra-gradient methods, even under inexactness. Specifically, we show that the proposed algorithms generate iterates that remain within a bounded set and the averaged iterates converge to an $\epsilon$-saddle point within $O(\epsilon^{-2/3})$ iterations in terms of a restricted gap function. Our algorithms match the theoretically established lower bound in this context and our analysis provides a simple and intuitive convergence analysis for second-order methods without any boundedness requirements. Finally, we present a series of numerical experiments on synthetic and real data that demonstrate the efficiency of the proposed algorithms.
Posterior sampling, i.e., exponential mechanism to sample from the posterior distribution, provides $\varepsilon$-pure differential privacy (DP) guarantees and does not suffer from potentially unbounded privacy breach introduced by $(\varepsilon,\delta)$-approximate DP. In practice, however, one needs to apply approximate sampling methods such as Markov chain Monte Carlo (MCMC), thus re-introducing the unappealing $\delta$-approximation error into the privacy guarantees. To bridge this gap, we propose the Approximate SAample Perturbation (abbr. ASAP) algorithm which perturbs an MCMC sample with noise proportional to its Wasserstein-infinity ($W_\infty$) distance from a reference distribution that satisfies pure DP or pure Gaussian DP (i.e., $\delta=0$). We then leverage a Metropolis-Hastings algorithm to generate the sample and prove that the algorithm converges in W$_\infty$ distance. We show that by combining our new techniques with a careful localization step, we obtain the first nearly linear-time algorithm that achieves the optimal rates in the DP-ERM problem with strongly convex and smooth losses.
We study several polygonal curve problems under the Fr\'{e}chet distance via algebraic geometric methods. Let $\mathbb{X}_m^d$ and $\mathbb{X}_k^d$ be the spaces of all polygonal curves of $m$ and $k$ vertices in $\mathbb{R}^d$, respectively. We assume that $k \leq m$. Let $\mathcal{R}^d_{k,m}$ be the set of ranges in $\mathbb{X}_m^d$ for all possible metric balls of polygonal curves in $\mathbb{X}_k^d$ under the Fr\'{e}chet distance. We prove a nearly optimal bound of $O(dk\log (km))$ on the VC dimension of the range space $(\mathbb{X}_m^d,\mathcal{R}_{k,m}^d)$, improving on the previous $O(d^2k^2\log(dkm))$ upper bound and approaching the current $\Omega(dk\log k)$ lower bound. Our upper bound also holds for the weak Fr\'{e}chet distance. We also obtain exact solutions that are hitherto unknown for curve simplification, range searching, nearest neighbor search, and distance oracle.
Constructing a similarity graph from a set $X$ of data points in $\mathbb{R}^d$ is the first step of many modern clustering algorithms. However, typical constructions of a similarity graph have high time complexity, and a quadratic space dependency with respect to $|X|$. We address this limitation and present a new algorithmic framework that constructs a sparse approximation of the fully connected similarity graph while preserving its cluster structure. Our presented algorithm is based on the kernel density estimation problem, and is applicable for arbitrary kernel functions. We compare our designed algorithm with the well-known implementations from the scikit-learn library and the FAISS library, and find that our method significantly outperforms the implementation from both libraries on a variety of datasets.
Training or finetuning large-scale language models (LLMs) such as GPT-3 requires substantial computation resources, motivating recent efforts to explore parameter-efficient adaptation to downstream tasks. One practical area of research is to treat these models as black boxes and interact with them through their inference APIs. In this paper, we investigate how to optimize few-shot text classification without accessing the gradients of the LLMs. To achieve this, we treat the black-box model as a feature extractor and train a classifier with the augmented text data. Data augmentation is performed using prompt-based finetuning on an auxiliary language model with a much smaller parameter size than the black-box model. Through extensive experiments on eight text classification datasets, we show that our approach, dubbed BT-Classifier, significantly outperforms state-of-the-art black-box few-shot learners and performs on par with methods that rely on full-model tuning.
We propose a novel non-negative spherical relaxation for optimization problems over binary matrices with injectivity constraints, which in particular has applications in multi-matching and clustering. We relax respective binary matrix constraints to the (high-dimensional) non-negative sphere. To optimize our relaxed problem, we use a conditional power iteration method to iteratively improve the objective function, while at same time sweeping over a continuous scalar parameter that is (indirectly) related to the universe size (or number of clusters). Opposed to existing procedures that require to fix the integer universe size before optimization, our method automatically adjusts the analogous continuous parameter. Furthermore, while our approach shares similarities with spectral multi-matching and spectral clustering, our formulation has the strong advantage that we do not rely on additional post-processing procedures to obtain binary results. Our method shows compelling results in various multi-matching and clustering settings, even when compared to methods that use the ground truth universe size (or number of clusters).
Gibbs posteriors are proportional to a prior distribution multiplied by an exponentiated loss function, with a key tuning parameter weighting information in the loss relative to the prior and providing a control of posterior uncertainty. Gibbs posteriors provide a principled framework for likelihood-free Bayesian inference, but in many situations, including a single tuning parameter inevitably leads to poor uncertainty quantification. In particular, regardless of the value of the parameter, credible regions have far from the nominal frequentist coverage even in large samples. We propose a sequential extension to Gibbs posteriors to address this problem. We prove the proposed sequential posterior exhibits concentration and a Bernstein-von Mises theorem, which holds under easy to verify conditions in Euclidean space and on manifolds. As a byproduct, we obtain the first Bernstein-von Mises theorem for traditional likelihood-based Bayesian posteriors on manifolds. All methods are illustrated with an application to principal component analysis.
All-digital massive multiuser (MU) multiple-input multiple-output (MIMO) at millimeter-wave (mmWave) frequencies is a promising technology for next-generation wireless systems. Low-resolution analog-to-digital converters (ADCs) can be utilized to reduce the power consumption of all-digital basestation (BS) designs. However, simultaneously transmitting user equipments (UEs) with vastly different BS-side receive powers either drown weak UEs in quantization noise or saturate the ADCs. To address this issue, we propose high dynamic range (HDR) MIMO, a new paradigm that enables simultaneous reception of strong and weak UEs with low-resolution ADCs. HDR MIMO combines an adaptive analog spatial transform with digital equalization: The spatial transform focuses strong UEs on a subset of ADCs in order to mitigate quantization and saturation artifacts; digital equalization is then used for data detection. We demonstrate the efficacy of HDR MIMO in a massive MU-MIMO mmWave scenario that uses Householder reflections as spatial transform.
For a fixed set ${\cal H}$ of graphs, a graph $G$ is ${\cal H}$-subgraph-free if $G$ does not contain any $H \in {\cal H}$ as a (not necessarily induced) subgraph. A recently proposed framework gives a complete classification on ${\cal H}$-subgraph-free graphs (for finite sets ${\cal H}$) for problems that are solvable in polynomial time on graph classes of bounded treewidth, NP-complete on subcubic graphs, and whose NP-hardness is preserved under edge subdivision. While a lot of problems satisfy these conditions, there are also many problems that do not satisfy all three conditions and for which the complexity ${\cal H}$-subgraph-free graphs is unknown. In this paper, we study problems for which only the first two conditions of the framework hold (they are solvable in polynomial time on classes of bounded treewidth and NP-complete on subcubic graphs, but NP-hardness is not preserved under edge subdivision). In particular, we make inroads into the classification of the complexity of four such problems: $k$-Induced Disjoint Paths, $C_5$-Colouring, Hamilton Cycle and Star $3$-Colouring. Although we do not complete the classifications, we show that the boundary between polynomial time and NP-complete differs among our problems and differs from problems that do satisfy all three conditions of the framework. Hence, we exhibit a rich complexity landscape among problems for ${\cal H}$-subgraph-free graph classes.
We derive general bounds on the probability that the empirical first-passage time $\overline{\tau}_n\equiv \sum_{i=1}^n\tau_i/n$ of a reversible ergodic Markov process inferred from a sample of $n$ independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct non-asymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.