亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A physical simulation engine (PSE) is a software system that simulates physical environments and objects. Modern PSEs feature both forward and backward simulations, where the forward phase predicts the behavior of a simulated system, and the backward phase provides gradients (guidance) for learning-based control tasks, such as a robot arm learning to fetch items. This way, modern PSEs show promising support for learning-based control methods. To date, PSEs have been largely used in various high-profitable, commercial applications, such as games, movies, virtual reality (VR), and robotics. Despite the prosperous development and usage of PSEs by academia and industrial manufacturers such as Google and NVIDIA, PSEs may produce incorrect simulations, which may lead to negative results, from poor user experience in entertainment to accidents in robotics-involved manufacturing and surgical operations. This paper introduces PHYFU, a fuzzing framework designed specifically for PSEs to uncover errors in both forward and backward simulation phases. PHYFU mutates initial states and asserts if the PSE under test behaves consistently with respect to basic Physics Laws (PLs). We further use feedback-driven test input scheduling to guide and accelerate the search for errors. Our study of four PSEs covers mainstream industrial vendors (Google and NVIDIA) as well as academic products. We successfully uncover over 5K error-triggering inputs that generate incorrect simulation results spanning across the whole software stack of PSEs.

相關內容

Evaluation plays a critical role in deep learning as a fundamental block of any prediction-based system. However, the vast number of Natural Language Processing (NLP) tasks and the development of various metrics have led to challenges in evaluating different systems with different metrics. To address these challenges, we introduce jury, a toolkit that provides a unified evaluation framework with standardized structures for performing evaluation across different tasks and metrics. The objective of jury is to standardize and improve metric evaluation for all systems and aid the community in overcoming the challenges in evaluation. Since its open-source release, jury has reached a wide audience and is available at //github.com/obss/jury.

We introduce an iterative solver named MINARES for symmetric linear systems $Ax \approx b$, where $A$ is possibly singular. MINARES is based on the symmetric Lanczos process, like MINRES and MINRES-QLP, but it minimizes $\|Ar_k\|$ in each Krylov subspace rather than $\|r_k\|$, where $r_k$ is the current residual vector. When $A$ is symmetric, MINARES minimizes the same quantity $\|Ar_k\|$ as LSMR, but in more relevant Krylov subspaces, and it requires only one matrix-vector product $Av$ per iteration, whereas LSMR would need two. Our numerical experiments with MINRES-QLP and LSMR show that MINARES is a pertinent alternative on consistent symmetric systems and the most suitable Krylov method for inconsistent symmetric systems. We derive properties of MINARES from an equivalent solver named CAR that is to MINARES as CR is to MINRES, is not based on the Lanczos process, and minimizes $\|Ar_k\|$ in the same Krylov subspace as MINARES. We establish that MINARES and CAR generate monotonic $\|x_k - x_{\star}\|$, $\|x_k - x_{\star}\|_A$ and $\|r_k\|$ when $A$ is positive definite.

Federated learning (FL) is an emerging machine learning (ML) paradigm that enables heterogeneous edge devices to collaboratively train ML models without revealing their raw data to a logically centralized server. However, beyond the heterogeneous device capacity, FL participants often exhibit differences in their data distributions, which are not independent and identically distributed (Non-IID). Many existing works present point solutions to address issues like slow convergence, low final accuracy, and bias in FL, all stemming from client heterogeneity. In this paper, we explore an additional layer of complexity to mitigate such heterogeneity by grouping clients with statistically similar data distributions (cohorts). We propose Auxo to gradually identify such cohorts in large-scale, low-availability, and resource-constrained FL populations. Auxo then adaptively determines how to train cohort-specific models in order to achieve better model performance and ensure resource efficiency. Our extensive evaluations show that, by identifying cohorts with smaller heterogeneity and performing efficient cohort-based training, Auxo boosts various existing FL solutions in terms of final accuracy (2.1% - 8.2%), convergence time (up to 2.2x), and model bias (4.8% - 53.8%).

We introduce a library called Push that takes a probabilistic programming approach to Bayesian deep learning (BDL). This library enables concurrent execution of BDL inference algorithms on multi-GPU hardware for neural network (NN) models. To accomplish this, Push introduces an abstraction that represents an input NN as a particle. Push enables easy creation of particles so that an input NN can be replicated and particles can communicate asynchronously so that a variety of parameter updates can be expressed, including common BDL algorithms. Our hope is that Push lowers the barrier to experimenting with BDL by streamlining the scaling of particles across GPUs. We evaluate the scaling behavior of particles on single-node multi-GPU devices on vision and scientific machine learning (SciML) tasks.

Pyrit is a field simulation software based on the finite element method written in Python to solve coupled systems of partial differential equations. It is designed as a modular software that is easily modifiable and extendable. The framework can, therefore, be adapted to various activities, i.e. research, education and industry collaboration.

AsaPy is a custom-made Python library designed to simplify and optimize the analysis of simulation data. It offers a range of features, including the design of experiment methods, statistical analysis techniques, machine learning algorithms, and data visualization tools. AsaPy's flexibility and customizability make it a viable solution for engineers and researchers who need to quickly gain insights into constructive simulations. AsaPy is built on top of popular scientific computing libraries, ensuring high performance and scalability. In this work, we provide an overview of the key features and capabilities of AsaPy, followed by an exposition of its architecture and demonstrations of its effectiveness through some use cases applied in military operational simulations. We also evaluate how other simulation tools deal with data science, highlighting AsaPy's strengths and advantages. Finally, we discuss potential use cases and applications of AsaPy and outline future directions for the development and improvement of the library.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司