亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Our extensive real measurements over Amazon EC2 show that the virtual instances often have different computing speeds even if they share the same configurations. This motivates us to study heterogeneous Coded Storage Elastic Computing (CSEC) systems where machines, with different computing speeds, join and leave the network arbitrarily over different computing steps. In CSEC systems, a Maximum Distance Separable (MDS) code is used for coded storage such that the file placement does not have to be redefined with each elastic event. Computation assignment algorithms are used to minimize the computation time given computation speeds of different machines. While previous studies of heterogeneous CSEC do not include stragglers-the slow machines during the computation, we develop a new framework in heterogeneous CSEC that introduces straggler tolerance. Based on this framework, we design a novel algorithm using our previously proposed approach for heterogeneous CSEC such that the system can handle any subset of stragglers of a specified size while minimizing the computation time. Furthermore, we establish a trade-off in computation time and straggler tolerance. Another major limitation of existing CSEC designs is the lack of practical evaluations using real applications. In this paper, we evaluate the performance of our designs on Amazon EC2 for applications of the power iteration and linear regression. Evaluation results show that the proposed heterogeneous CSEC algorithms outperform the state-of-the-art designs by more than 30%.

相關內容

 Amazon EC2(Elastic Compute Cloud)是一個讓用戶可以租用云電腦運行所需應用的系統。

This paper studies the case of possibly high-dimensional covariates in the regression discontinuity design (RDD) analysis. In particular, we propose estimation and inference methods for the RDD models with covariate selection which perform stably regardless of the number of covariates. The proposed methods combine the local approach using kernel weights with `1-penalization to handle high-dimensional covariates, and the combination is new in the literature. We provide theoretical and numerical results which illustrate the usefulness of the proposed methods. Theoretically, we present risk and coverage properties for our point estimation and inference methods, respectively. Numerically, our simulation experiments and empirical example show the robust behaviors of the proposed methods to the number of covariates in terms of bias and variance for point estimation and coverage probability and interval length for inference.

Quantizing deep networks with adaptive bit-widths is a promising technique for efficient inference across many devices and resource constraints. In contrast to static methods that repeat the quantization process and train different models for different constraints, adaptive quantization enables us to flexibly adjust the bit-widths of a single deep network during inference for instant adaptation in different scenarios. While existing research shows encouraging results on common image classification benchmarks, this paper investigates how to train such adaptive networks more effectively. Specifically, we present two novel techniques for quantizing deep neural networks with adaptive bit-widths of weights and activations. First, we propose a collaborative strategy to choose a high-precision teacher for transferring knowledge to the low-precision student while jointly optimizing the model with all bit-widths. Second, to effectively transfer knowledge, we develop a dynamic block swapping method by randomly replacing the blocks in the lower-precision student network with the corresponding blocks in the higher-precision teacher network. Extensive experiments on multiple image classification datasets including video classification benchmarks for the first time, well demonstrate the efficacy of our approach over state-of-the-art methods.

We propose a computationally-friendly adaptive learning rate schedule, "AdaLoss", which directly uses the information of the loss function to adjust the stepsize in gradient descent methods. We prove that this schedule enjoys linear convergence in linear regression. Moreover, we provide a linear convergence guarantee over the non-convex regime, in the context of two-layer over-parameterized neural networks. If the width of the first-hidden layer in the two-layer networks is sufficiently large (polynomially), then AdaLoss converges robustly \emph{to the global minimum} in polynomial time. We numerically verify the theoretical results and extend the scope of the numerical experiments by considering applications in LSTM models for text clarification and policy gradients for control problems.

Traditional credibility analysis of risks in insurance is based on the random effects model, where the heterogeneity across the policyholders is assumed to be time-invariant. One popular extension is the dynamic random effects (or state-space) model. However, while the latter allows for time-varying heterogeneity, its application to the credibility analysis should be conducted with care due to the possibility of negative credibilities per period [see Pinquet (2020a)]. Another important but under-explored topic is the ordering of the credibility factors in a monotonous manner -- recent claims ought to have larger weights than the old ones. This paper shows that the ordering of the covariance structure of the random effects in the dynamic random effects model does not necessarily imply that of the credibility factors. Subsequently, we show that the state-space model, with AR(1)-type autocorrelation function, guarantees the ordering of the credibility factors. Simulation experiments and a case study with a real dataset are conducted to show the relevance in insurance applications.

The crucial problem in vehicle re-identification is to find the same vehicle identity when reviewing this object from cross-view cameras, which sets a higher demand for learning viewpoint-invariant representations. In this paper, we propose to solve this problem from two aspects: constructing robust feature representations and proposing camera-sensitive evaluations. We first propose a novel Heterogeneous Relational Complement Network (HRCN) by incorporating region-specific features and cross-level features as complements for the original high-level output. Considering the distributional differences and semantic misalignment, we propose graph-based relation modules to embed these heterogeneous features into one unified high-dimensional space. On the other hand, considering the deficiencies of cross-camera evaluations in existing measures (i.e., CMC and AP), we then propose a Cross-camera Generalization Measure (CGM) to improve the evaluations by introducing position-sensitivity and cross-camera generalization penalties. We further construct a new benchmark of existing models with our proposed CGM and experimental results reveal that our proposed HRCN model achieves new state-of-the-art in VeRi-776, VehicleID, and VERI-Wild.

Algorithmic harmonization - the automated harmonization of a musical piece given its melodic line - is a challenging problem that has garnered much interest from both music theorists and computer scientists. One genre of particular interest is the four-part Baroque chorales of J.S. Bach. Methods for algorithmic chorale harmonization typically adopt a black-box, "data-driven" approach: they do not explicitly integrate principles from music theory but rely on a complex learning model trained with a large amount of chorale data. We propose instead a new harmonization model, called BacHMMachine, which employs a "theory-driven" framework guided by music composition principles, along with a "data-driven" model for learning compositional features within this framework. As its name suggests, BacHMMachine uses a novel Hidden Markov Model based on key and chord transitions, providing a probabilistic framework for learning key modulations and chordal progressions from a given melodic line. This allows for the generation of creative, yet musically coherent chorale harmonizations; integrating compositional principles allows for a much simpler model that results in vast decreases in computational burden and greater interpretability compared to state-of-the-art algorithmic harmonization methods, at no penalty to quality of harmonization or musicality. We demonstrate this improvement via comprehensive experiments and Turing tests comparing BacHMMachine to existing methods.

Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

We discuss problems with the standard approaches to evaluation for tasks like visual question answering, and argue that artificial data can be used to address these as a complement to current practice. We demonstrate that with the help of existing 'deep' linguistic processing technology we are able to create challenging abstract datasets, which enable us to investigate the language understanding abilities of multimodal deep learning models in detail, as compared to a single performance value on a static and monolithic dataset.

北京阿比特科技有限公司